跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.102) 您好!臺灣時間:2025/12/03 20:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡嘉賢
研究生(外文):Jia-xian Jian
論文名稱:CMOS-MEMS熱電型真空計製作與量測
論文名稱(外文):Fabrication and Measurement of CMOS MEMS-Based Thermoelectric Vacuum Sensor
指導教授:陳忠男
指導教授(外文):Chung-Nan Chen
口試委員:陳忠男鍾震桂沈志雄
口試委員(外文):Chung-Nan ChenChen-Kuei ChungChih-Hsiung Shen
口試日期:2014-07-24
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:光電與通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:61
中文關鍵詞:熱電式真空計暫態熱傳導電調控量真空
外文關鍵詞:thermocouple vacuum sensortransient thermal conductionelectrical modulation
相關次數:
  • 被引用被引用:8
  • 點閱點閱:695
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
本文將呈現以CMOS-MEMS技術製作的熱電式真空計,其中CMOS-MEMS技術具有低成本,易與電路整合等優勢。本研究之熱電真空計具有二種不同懸浮結構,利用<100>單晶矽異向性蝕刻使結構懸浮,懸浮結構分別為長支腳低熱導結構(TP401)和短支腳高熱導結構(TP402),並針對此二種結構進行量測。其中真空量測以電調控量測架構抑制雜訊能力優於一般直流量測架構。
量測分別有熱導量測、熱電訊號輸出量測、熱時間常數和真空量測。熱導量測使用直流功率供給加熱器,利用功率與溫差換算出熱導,TP401和TP402熱導分別約73.83uW/K和79.2uW/K。熱電訊號輸出量測亦是直流功率2.5mW供給加熱器其熱電訊號均約為13mV。熱時間常數量測是使用不同頻率紅外線照射元件並推得出常壓環境元件時間常數約15ms,真空環境元件時間常數約220ms。真空量測是由低壓往常壓回壓並分別記錄不同壓力下的熱電訊號,使用直流量測真空與電調控量測真空,直流量測架構其熱電輸出訊號跳動約8-10mV,而電調控量測真空架構,熱電輸出訊號跳動低於0.3mV,抑制雜訊效果佳。電調控量測架構中的電源頻率稍高,則真空量測(低壓往常壓回壓)將會產生熱電訊號先升後降的異常現象,利用暫態熱傳導理論驗證其原因為元件時間常數隨壓力下降而增加導致跟不上電源頻率緣故。


This paper presents the measurement and the fabrication of thermocouple vacuum sensors fabricated by a low cost CMOS process and MEMS technology. The thermocouple vacuum sensors have two types of suspended structures with different solid thermal conductance. The vacuum sensor with shorter supporting leads and larger solid conductance was named TP401 and the other one was TP402. Each suspended structure was formed by using <100> silicon anisotropic etching process after the CMOS process and has a polysilicon heater and an aluminum/polysilicon thermocouple pair. The polysilicon heater also serves as a thermistor temperature sensor. The performances of the sensors were characterized in this work. Furthermore, an AC electrical modulation method using a lock-in amplifier was adopted for improving the signal-to-noise ratio of the measurement of the sensors.
The thermal conductance of TP401 and TP402 were evaluated as 73.83uW/K and 79.2uW/K according to the ratio of bias heating power to temperature difference between the hot junction and the cold junction of the thermocouple. The thermocouple output voltage was about 13mV as the power of heater was 2.5mW. The thermal time constants of these sensors were also figured out by adopting the measurement of infrared frequency response of the thermocouple vacuum sensors in air and in vacuum respectively. The measurement results show that the thermal time constants of TP402 were 15ms and 220ms at atmospheric pressure and in vacuum environment respectively. The pressure response measurement of the vacuum sensors using DC bias will result in an 8-10mV voltage fluctuation and lower the signal-to-noise ratio. The signal fluctuation could be improved to 0.3mV by using an AC electrical modulation.

摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1研究動機 1
1.2真空與真空計的定義與應用 3
1.3文獻回顧 7
1.4論文架構 13
第二章 基礎理論 14
2.1熱傳導理論 14
2.1.1固體熱導Gs(Solid thermal conductance) 14
2.1.2氣體熱導Gg(Gas thermal conductance) 18
2.1.3輻射熱導Gr(Radiation Conductance) 21
2.2熱電理論 22
2.2.1席貝克效應(Seebeck effect) 22
2.2.2帕爾帖效應(Pelitier effect) 24
2.2.3湯姆森效應(Thomson effect) 25
2.2.4熱電優值(Figure of merit) 25
2.3熱電偶式真空計理論 26
2.4暫態熱傳導 28
第三章 元件製作 32
3.1元件製程簡介 32
3.2蝕刻製程 35
3.3元件打線與封裝 36
第四章 真空計量測與分析 37
4.1元件特性量測 37
4.1.1電阻溫度係數(TCR)量測 37
4.1.2元件熱導量測與估算 39
4.1.3熱電偶輸出訊號量測 42
4.2頻率響應 43
4.2.1量測儀器介紹 43
4.2.2常壓環境 44
4.2.2真空環境 45
4.3真空量測 46
4.3.1直流量測真空 46
4.3.2電調控量測真空 48
4.3.3固定壓力之直流量測真空 56
第五章 結論與未來展望 57
5.1結論 57
5.2未來展望 58
參考文獻 59


[1]電子工程專輯:什麼是MEMS, 11 2009. [online] Available: http://www.eettai wan.com/SEARCH/ART/MEMS.HTM.
[2]Yole developpement, [online]. Available: http://www.yole.fr/
[3]STMicroelectronics, 03 2012, [online].Available: http://www.st.com/web/en/home.html
[4]蘇青森, “真空技術精華,”五南書局, 2004
[5]Kurt J Lesker Company, 08 2013. [online]. Available: http://www.lesker.com/newweb/gauges/gauges_technicalnotes_1.cfm
[6]SLAC Vacuum Systems overview. [online] Available: http://www.slac.stanford.edu/grp/ad/op/aso2_manual/vacuum/Vacuum.html
[7]James H. Wittke, 2008. [online]. Available: http://www4.nau.edu/microanalysis/microprobe-sem/instrumentation.html
[8]A. W. Van Herwarrden and P. M. Sarro, “Integrated Vacuum Sensor,” Sensors and Actuators, vol.8, no.3, pp. 187-196, 1985.
[9]A. W. Van Herwarrden and P. M. Sarro, “Floating-membrane Thermal Vacuum sensor,” Sensors and Actuators, vol.14, pp. 259-268, 1988.
[10]T. M. Berliki, S. J. Osadnik, E. L. Prociow, “Vacuum Pressure Thermal Thin-film Sensor,” Vacuum, vol.53, pp. 373-376, 1999.
[11]D. H. Jung, I. K. Moon, Y. J. Yun, C. D. Park, S. M. Chung, Y. H. Jeong “Measuring Thermophysical Properties of Gases with a Single Thermocoupe:Peltier Vacuum Gauge,” ScienceDirect thermochimica, acta455, pp. 40-45, 2007.
[12]D. Randjelovic, V. Jovanov, Z. Lazic, Z. Djuric and M. Matic, “Vacuum MEMS Sensor Based on Thermopiles Simple model and Experimental Results,” 26th international conference on microelectrics, pp. 11-14, 2008.
[13]N. Takashima and M. Kimura, “Novel Extension Methods of the Sensing Pressure Range of the Pirani Vacuum Sensor,” Solid-state sensors, Actuators and Microsystems conference, pp. 1734-1737, 2009.
[14]X. Sun, D. Xu, B. Xiong, G. Wu and Y. Wang, “A Wide Measurement Pressure Range CMOS-MEMS Based Integrated Thermopile Vacuum Gauge with an XeF2 Dry-etching Process,” Sensors and Actuators A, vol. 201, pp. 428-433, 2013.
[15]G. Bedo, W. Kraus, R. Muller, “Comparsion of Different Micromechanical Vacuum Sensors,” Sensors and Actuators A, vol.85, pp.181-188, 2000.
[16]T. M. Berlicki, “Convection-conductive Vacuum Sensor,” Vacuum, vol.57, pp. 413-419, 2000.
[17]T. M. Berlicki, “Thermal Vacuum Sensor with Compensation of Heat Transfer,” Sensors and Actuators A, vol.93, pp. 27-32, 2001.
[18]顏維謀, “高等熱質傳學,”國立台南大學綠色能源科技, 台南, 2010
[19]劉靜, “微奈米尺度熱傳學,”五南書局, 台北市, 2004
[20]C. L. a. H. F. Jin Xie, “Design, Fabrication, and Characterization of CMOS MEMS-Based Thermoelectric Power Generators,” Journal of Microelectromechanical Systems, vol. 19, no. 2, pp. 317-324, 2010.
[21]B. Li, “Design and Simulation of an Uncooled Double-cantilever Microbolometer with the Potential for ~mK NETD”, Sensors and Actuators A: Physical, vol. 112, no. 2-3, pp. 351-359, 2004.
[22]蕭健華,“矽化鈦熱阻型微感測器製作與量測之研究,”國立高雄應用科技大學光電與通訊工程研究所碩士論文, 2010.
[23]Z. Hao, L. Zhichao, T. Lilin, T. Zhimin, L. Litian and L. Zhijian, “Thermal Conductivity Measurements of Ultra-thin Single Crystal Silicon Films Using Improved Structure,” China.
[24]M. Asheghi, Y. K. Leung, and K. E. Goodson, App1.phys.Lett, vol. 71, pp. 1798-1800, 1997.
[25]W. Liu, M. Asheghi, Journal of Applied Physics, Vol. 98, 123523, 2005.
[26]Y. Sungtaek, J. Kenneth, E. Goodson, “Microscale Heat Conduction in Integrated Circuits and Their Constituent Thin Films,” Springer, 1999.
[27]L. L. Spina, A. W. Van Herwaarden, H. Schellevis, W. H. A. Wien, N. Nenadivic, and L. K. Nanver, “Bulk-micromachined Test Structure for Fast and Reliable Determination of the Lateral Thermal Conductivity of Thin Films,” IEEE Journal of microelectromechical systems, vol. 16, pp. 675-683, June, 2007.
[28]C. Mastrangelo and R. Muller, “Microfabricated Thermal Absolute-pressure Sensor with On-chip Digital Front-end Processor,” IEEE Journal of Solid-State Circuits, vol. 26, no. 12, pp. 1998-2007, 1991.
[29]翁炳國,“矽之微加工技術與應用,”國立交通大學光電工程研究所博士論文, 1992.
[30]王信智,“CMOS製程相容之量測熱導率微元件模擬、設計與製作,”國立高雄應用科技大學光電與通訊工程研究所碩士論文, 2012.
[31]邱瑞易,“積體化熱電元件-致冷器之設計與分析,”國立中興大學機械工程研究所碩士論文, 2004.
[32]工業材料雜誌302期, 02 2012 [online] Available: http://webarchive.ncl.edu.tw/
[33]Incropera, DeWitt, Bergman, and Lavine, Introduction to Heat Transfer, John Wiley and Sons, New Jersey, 2007.
[34]黃德智,“硼擴散摻雜<111>單晶矽在雙摻雜TMAH溶液中的非等性向蝕刻之研究,”國立高雄應用科技大學光電與通訊工程研究所碩士論文, 2010.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top