|
[1] P. G. Klemens and D. F. Pedraza, “Thermal conductivity of graphite in the basal plane,” Carbon, vol. 32, no. 4, pp. 735-741, 1994. [2] S. Zhou , S. Chiang , J. Xu , H. Du , B. Li ,C. Xu , and F. Kang ,” Modeling the in-plane thermal conductivity of a graphite/polymer composite sheet with a very high content of natural flake graphite,” Carbon, vol. 50, no. 14, pp. 5052–5061, 2012. [3] W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, ” Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” Journal of Applied Science, vol. 32, no. 9, pp. 1679-1684, 1961. [4] N. C. Gallego, D. D. Edie , B. Nysten, J. P. Issi, J. W. Treleaven, and G. V. Deshpande, “The thermal conductivity of ribbon-shaped carbon fibers,” Carbon, Vol. 38, no. 7, pp. 1003-1010, 2000. [5] A.J. Angstrom, Ann. Phys. Chemie, vol.144, no. 513, 1861. [6] H. Nagano, H. Kato, A. Ohnishi, and Y. Nagasaka,” Measurement of the thermal diffusivity of an anisotropic graphite sheet using a laser-heating AC calorimetric method,” International journal of thermophysics, vol. 22, no. 1, pp. 301-312, 2001. [7] D. P. Bentz, “Transient plane source measurements of the thermal properties of hydrating cement pastes,” Journal of Materials and Structures, vol. 40, no. 10, pp. 1073-1080, 2007. [8] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Letters, vol. 8, no. 3, pp. 902-907, 2008. [9] S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau ,” Extremely high thermal conductivity of graphene: Prospects for thermalmanagement applications in nanoelectronic circuits,” Applied Physics Letters, vol. 92, no. 15, pp. 151911, 2008. [10] J.U. Lee, D. Yoon, H. Kim, S. W. Lee, and H. Cheong, "Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy." Physical Review B, vol. 83, no. 8, pp. 081419, 2011. [11] D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, “Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering,” Physical Review B, vol. 79, no. 15, pp. 155413, 2009. [12] D. L. Nika, S. Ghosh, E. P. Pokatilov, and A. A. Balandin, “Lattice thermal conductivity of graphene flakes: Comparisonwith bulk graphite,” Applied Physics Letters, vol. 94, no. 20, pp. 203103, 2009. [13] W. J. Evans, L. Hu, and P. Keblinski, “Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination,” Applied Physics Letters, vol. 96, no. 20, pp. 203112, 2010. [14] W. Jang, Z. Chen, W. Bao, C. N. Lau, and C. Dames, “Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite,” Nano letters, vol. 10, no. 10, pp. 3909-3913, 2010. [15] A. A. Balandin, "Thermal properties of graphene and nanostructured carbon materials." Nature materials, vol. 10, no. 8, pp. 569-581, 2011. [16] A. Alofi and G. P. Srivastava, “Phonon conductivity in graphene,” Journal of Applied Physics, vol. 112, no. 1, pp. 013517-013517, 2012. [17] S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhan, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nature Materials, vol. 11, no. 3, pp. 203-207, 2012. [18] 瑞領科技股份有限公司,參考網頁:http://www.longwin.com/big5/product/9514.html. [19] F. Stern, M. Muste, M. L. Beninati, and W. E. Eichinger, ” Summary of experimental uncertainty assessment methodology with example,” IIHR Technical Report, no. 406, 1999. [20] 陳到達,熱分析,渤海堂文化事業有限公司,1992。 [21] J. P. Holman, Heat transfer, McGrawHill, 2002.
|