跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 21:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃襄
研究生(外文):Hsiang Huang
論文名稱:微奈米石墨片之高導熱特性量測與分析研究
論文名稱(外文):Analysis and Measurement of High Thermal Conductivity of Micro/Nano Graphite Sheets
指導教授:楊錫杭
口試委員:潘吉祥康尚文
口試日期:2013-06-18
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:58
中文關鍵詞:導熱材料熱傳導量測人造石墨片天然石墨片
外文關鍵詞:thermal conductive materialsthermal conductivity measurementartificial graphite sheetnatural graphite sheet
相關次數:
  • 被引用被引用:1
  • 點閱點閱:285
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究在探討人造以及不同厚度的天然高導熱石墨片之熱傳特性。實驗部分以Angstrom’s method為基礎,架設熱擴散係數量測設備。測得於室溫環境下,人造石墨片之熱擴散係數約為(8.24±0.93) x 10 -4 m2/s,而天然石墨片測得值約介於(2.04±0.26) x 10 -4至(2.67±0.17) x 10 -4 m2/s之間,且經實驗誤差分析後,發現以此方法建立之設備,量測誤差約為±10%左右。以電子磅秤進行重量之量測而得到密度,以及示差掃描熱量分析儀(DSC)進行比熱量測之後,綜合密度及比熱即可得樣本之熱傳導係數。結構分析部分,以光學顯微鏡(OM)、掃描式電子顯微鏡(SEM)以及穿透式電子顯微鏡(TEM),進行表面結構、分子結構之觀測分析。綜合本研究實驗結果以及微奈米觀測分析出,人造石墨片之碳結構能有較好之晶格特性以及石墨純度,因此相較天然石墨片能有較高的熱擴散係數。
This paper aims to investigate thermal conductivity properties originated between artificial and different thicknesses natural high thermal conductivity graphite sheets. The Angstrom’s method was used to establish a thermal diffusivity measurement instrument. The experimental results showed the room temperature thermal diffusivity of artificial graphite sheet is about (8.24±0.93) x 10^-4 m^2/s, and the values of natural graphite sheets are in the range (2.04±0.26) x 10^-4 to (2.67±0.17) x 10^-4 m^2/s. The experimental results also showed the error within ±10% by the uncertainty analysis. The graphite sheet densities and specific heat were measured by an electronic balance and differential scanning calorimetry (DSC). Combining the thermal diffisivity, density, and specific heat, the thermal conductivity can be obtained. Optical microscope (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe and analyze the graphite sheets surface and atomic structures. The experimental result and micro/nano observation showed that carbon structures of artificial graphite sheets are well arranged in lattice and high purity. That results in a better thermal conductivity than natural graphite sheets.
摘要 i
Abstract ii
目錄 iii
圖目錄 iv
表目錄 vi
第一章 緒論 1
1.1前言 1
1.2 研究動機與目的 1
1.3 研究方法與目標 2
1.4 文獻回顧 3
1.4.1 石墨片材料相關研究 3
1.4.2 熱擴散係數量測之研究 4
1.5 論文架構 15
第二章 研究基礎理論與原理 16
2.1 熱擴散係數量測 16
2.2 熱擴散係數量測誤差分析 17
2.3 石墨片比熱量測 20
第三章 實驗設計與規劃 22
3.1實驗方法 22
3.2 實驗步驟 24
第四章 實驗結果與量測分析 26
4.1 熱擴散係數量測結果 26
4.2 熱擴散係數量測誤差分析 33
4.3 石墨片比熱量測結果 34
4.4 推論熱傳導係數及比較 37
4.5 石墨片表面形貌量測 39
4.5.1 光學顯微鏡量測結果 49
4.5.2 掃描電子顯微鏡量測結果 41
4.5.3 穿透式電子顯微鏡量測結果 46
4.6 石墨片截面形貌量測 47
第五章 結論與未來展望 50
5.1 結論 50
5.2 未來展望 51
參考文獻 52
附錄 54
[1] P. G. Klemens and D. F. Pedraza, “Thermal conductivity of graphite in the basal plane,” Carbon, vol. 32, no. 4, pp. 735-741, 1994.
[2] S. Zhou , S. Chiang , J. Xu , H. Du , B. Li ,C. Xu , and F. Kang ,” Modeling the in-plane thermal conductivity of a graphite/polymer composite sheet with a very high content of natural flake graphite,” Carbon, vol. 50, no. 14, pp. 5052–5061, 2012.
[3] W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, ” Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” Journal of Applied Science, vol. 32, no. 9, pp. 1679-1684, 1961.
[4] N. C. Gallego, D. D. Edie , B. Nysten, J. P. Issi, J. W. Treleaven, and G. V. Deshpande, “The thermal conductivity of ribbon-shaped carbon fibers,” Carbon, Vol. 38, no. 7, pp. 1003-1010, 2000.
[5] A.J. Angstrom, Ann. Phys. Chemie, vol.144, no. 513, 1861.
[6] H. Nagano, H. Kato, A. Ohnishi, and Y. Nagasaka,” Measurement of the thermal diffusivity of an anisotropic graphite sheet using a laser-heating AC calorimetric method,” International journal of thermophysics, vol. 22, no. 1, pp. 301-312, 2001.
[7] D. P. Bentz, “Transient plane source measurements of the thermal properties of hydrating cement pastes,” Journal of Materials and Structures, vol. 40, no. 10, pp. 1073-1080, 2007.
[8] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Letters, vol. 8, no. 3, pp. 902-907, 2008.
[9] S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau ,” Extremely high thermal conductivity of graphene: Prospects for thermalmanagement applications in nanoelectronic circuits,” Applied Physics Letters, vol. 92, no. 15, pp. 151911, 2008.
[10] J.U. Lee, D. Yoon, H. Kim, S. W. Lee, and H. Cheong, "Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy." Physical Review B, vol. 83, no. 8, pp. 081419, 2011.
[11] D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, “Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering,” Physical Review B, vol. 79, no. 15, pp. 155413, 2009.
[12] D. L. Nika, S. Ghosh, E. P. Pokatilov, and A. A. Balandin, “Lattice thermal conductivity of graphene flakes: Comparisonwith bulk graphite,” Applied Physics Letters, vol. 94, no. 20, pp. 203103, 2009.
[13] W. J. Evans, L. Hu, and P. Keblinski, “Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination,” Applied Physics Letters, vol. 96, no. 20, pp. 203112, 2010.
[14] W. Jang, Z. Chen, W. Bao, C. N. Lau, and C. Dames, “Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite,” Nano letters, vol. 10, no. 10, pp. 3909-3913, 2010.
[15] A. A. Balandin, "Thermal properties of graphene and nanostructured carbon materials." Nature materials, vol. 10, no. 8, pp. 569-581, 2011.
[16] A. Alofi and G. P. Srivastava, “Phonon conductivity in graphene,” Journal of Applied Physics, vol. 112, no. 1, pp. 013517-013517, 2012.
[17] S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhan, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nature Materials, vol. 11, no. 3, pp. 203-207, 2012.
[18] 瑞領科技股份有限公司,參考網頁:http://www.longwin.com/big5/product/9514.html.
[19] F. Stern, M. Muste, M. L. Beninati, and W. E. Eichinger, ” Summary of
experimental uncertainty assessment methodology with example,” IIHR
Technical Report, no. 406, 1999.
[20] 陳到達,熱分析,渤海堂文化事業有限公司,1992。
[21] J. P. Holman, Heat transfer, McGrawHill, 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top