跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 05:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林均山
研究生(外文):LIN,CHUNG-SHAN
論文名稱:C28引信點火藥燃燒特性分析研究
論文名稱(外文):C28 Fuse Igniter Composition Combustion Property Analysis
指導教授:葛揚雄
指導教授(外文):KO, YANG-HSIUNG
口試委員:吳炳文張繼禾
口試委員(外文):WU, PING-WENCHANG, CHI-HO
口試日期:2016-04-19
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:兵器系統工程碩士班
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:62
中文關鍵詞:點火藥熱通量高速攝影機熱電偶
外文關鍵詞:igniter compositionheat fluxhigh-speed camerathermocouple
相關次數:
  • 被引用被引用:0
  • 點閱點閱:295
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
本文主要記錄C28引信點火藥,在不同環境下靜置燃燒之性能,包含火焰噴流速率、火藥感度及生成溫度與壓力。點火藥組合成分有硼(Boron)、四氧化三鉛(Pb3O4)及外加膠(Viton) ,混合比例為B:Pb3O4=10:90。實驗模型有開放式及密閉式兩種,使用自耦變壓器及計時器,控制輸入電壓及通電時間,點燃不同環境下之點火藥,燃燒後急速生成之溫度及壓力,經由K Type細式露出型熱電偶及壓電式壓電晶體感測器(Sensor)擷取,將物理能量轉換傳送至高速暫態資料擷取系統儲存分析。
實驗前規劃以原始成分比例為基準,在3%的變異條件下,設定不同比例之點火藥配方,置入NASA-Lewis Code(CET86)數據資料庫格式,進行燃燒熱力學理論之平衡計算,供後續實驗參考驗證。運用高速攝影機以快拍慢放方式觀察火焰噴流,記錄數毫秒內稍縱即逝之燃燒現象,另將銅片置於石英管出口端,於銅片背面量測點火藥燃燒後噴流之受熱,藉卡爾曼濾波技術觀念所發展之遞迴式估算法(Recursive Estimation Technique),以逆向熱傳理論估算出作用於銅片正面之急速燃燒噴火脈衝熱通量,推算出銅片背面模擬溫度,進而與實際量測溫度比較驗證。實驗過程驗證量測技術之可行性,分析各項熱力學性質數據,建立對我國軍火工品研發之重要參考依據。
This research analyzes C28 Fuse Igniter Composition Combustion Properties standing in different environments, including the flame burning rate, sensitivity and generation temperature and pressure. The igniter composition is B (Boron), Red Lead(Pb3O4) with glue (Viton). The mixing ratio is B: Pb3O4 = 10: 90. Two experimental model sare used to distinguish between open and closed ignition. This composition can be ignited under different environments using an auto- transformer and timer to control the input voltage and power-on time. The generated temperature and pressure are captured after rapid combustion using the fine style exposed K Type thermocouple and piezoelectric crystal sensor. The physical energy is transferred into a high transient data acquisition system for storage and analysis.
The original igniter composition ratio was set at 3% of the variation in conditions as a reference. Different igniter composition formulation proportions were entered into the NASA-Lewis Code (CET86) data repository format, with the balanced combustion thermodynamic theory calculations for subsequent experimental verification. High-speed cameras were used to capture the rapid burning process within a few milliseconds. We will place a copper plate under the bottom of the quartz tube, measuring the copper temperature back after ignition, using the developed recursive formula estimation Kalman filtering technique. The reverse heat transfer estimate theory is used to estimate the copper effect on the front of the rapid pulse combustion flame heat flux. The measured and simulated temperatures are compared. Experimental verification of the process measuring and thermodynamic properties data analysis establish an important arms development work product research reference.
誌謝-ii
摘要-iii
ABSTRACT-iv
目錄-v
表目錄-vii
圖目錄-viii
符號表-xi
1.研究背景及目的-1
1.1 背景-1
1.2 目的-2
2.實驗步驟及設備-7
2.1 前言-7
2.2 點火藥製程-10
2.3 實驗設備-12
2.3.1 熱力學性質模擬分析平台:-12
2.3.2 定量化點火系統-13
2.3.3 視覺化影像擷取系統-16
2.3.4 高速暫態資料擷取系統-18
2.4 實驗步驟-24
2.4.1 熱力學性質模擬分析-24
2.4.2 點火藥感度分析-25
2.4.3 燃燒輸出訊號量測-27
3. 熱通量逆向估算-30
4. 結果與討論-38
4.1 C28引信點火藥熱力學性質分析-38
4.2 C28引信點火藥最小點火能量分析-41
4.3 C28引信點火藥燃燒噴流速率分析-43
4.4 C28引信點火藥熱通量估算-47
4.5 C28引信點火藥藥重與輸出溫度壓力分析-50
5. 結論與建議-56
5.1 結論-56
5.2 未來研究方向與建議-57
參考文獻-58
自傳-62
[1]陳俊瑜、夏焱生,火炸藥學,中正理工學院兵器系統叢書,桃園,第261-273頁,1991。
[2]席劍飛、劉建忠、李和平、汪洋、張彥威、周俊虎、岑可法,“促進硼颗粒點火和燃燒的方法的研究進展”,浙江大學能源清潔利用國家重點實驗室,浙江杭州,碩士論文,第10-12頁,2013。
[3]劉建斌,“硼系延期藥的研究”, 南京理工大學化工學院,碩士論文,南京,第6-8頁,2002。
[4]車吉成,“硼系延期藥的反應性研究”, 南京理工大學化工學院,碩士論文,南京,第12-13頁,2007。
[5]俞金良,郝建春,“硼鉛丹延期藥預點火反應機理研究”,南京理工大學化工學院,碩士論文,南京,第22-23頁,2004。
[6]劉文聖,“2.75吋火箭彈點火頭急速燃燒之研究”,碩士論文,國防大學理工學院動力及系統工程學系兵器系統工程碩士班,桃園,第1頁,2013。
[7]Http://www.storm.mg/article/22053.htm(2015.10.15)
[8]Http://wapbaike.baidu.com/view/325566.htm(2015.7.28)
[9]http://www.scu.edu.tw/physics/science-scu/M302/12.htm(2016.2.19)
[10]http://bbs.tiexue.net/post2_6992174_1.html (2015.5.14)
[11]Stolz, G. Jr., “Numerical Solutions to an Inverse Problem of Heat Conduction for Simple Shapes,” ASME Journal of Heat Transfer, Vol. 82, pp. 20-26, 1960.
[12]Li, Z. R. and Lu, Z. W., “A Control Theory Method for Solutions of Inverse Transient Heat Conduction Problems,” Transactions of the ASME, Vol. 116, pp. 228-230, 1994.
[13]Kalman, R. E., “A New Approach to Linear Filtering and Prediction Problems,” ASME Journal of Basic Engineering, Series 82d, pp. 35-45, 1960.
[14]Grewal, M. S., “Application of Kalman Filtering to the Calibration and Alignment of Inertial Navigation Systems,” Proceedings of PLANS '86-Position Location and Navigation Symposium, Las Vegas, pp. 80-98, 1986.
[15]Grewal, M. S. and Miyasako, R. S., “Gyro Compliance Estimation in the Calibration and Alignment of Inertial Measurement Units,” Proceedings of the Eighteenth Joint Service Conference on Data Exchange for Inertial Systems, San Diego, pp. 25-36, 1986.
[16]Chui, C. K. and Chen, G., Kalman Filtering with Real-time Applications, Springer - Verlag, New York, pp. 40-57, 1987.
[17]Grewal, M. S. and Payne, H. J., “Identification of Parameters in a Freeway Traffic Model,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-6, pp. 176-185, 1976.
[18]Scarpa, F. and Milano, G., “Kalman Smoothing Technique Applied to the Inverse Heat Conduction Problem,” Numerical Heat Transfer, Part B, Vol. 28, pp. 79-96, 1995.
[19]Tuan, P. C., “The Estimation of Thermal Unknown Functions by Solving Two Dimensional Inverse Heat Conduction Problems,” Ph. D. thesis, North Carlina State University, pp. 70-86, 1991.
[20]Ji, C. C. and Jang, H. Y., “Experimental Investigation in Inverse Heat Conduction Problem,” Numerical Heat Transfer, Part A, Vol. 34, pp. 75-91, 1998.
[21]Ji, C. C. and Jang, H. Y., “An Inverse Problem in Predicting Heat Flux of M42 Percussion Primer,” J. of the Franklin Institute, Vol. 335B, No. 4, pp. 595-604, 1998.
[22]Ji, C. C., Tuan, P. C., and Jang, H. Y., “A Recursive Least-Squares Algorithm (RLSA) for On-Line 1-D Inverse Heat Conduction Estimation, ”International J. of Heat and Mass Transfer, Vol. 40, No. 9, pp. 2801-2096, 1997.
[23]Ji, C. C. and Jang, H. Y., “Recursive Least-Squares Algorithm for Estimation of Heat Source, ”Numerical Heat Transfer, Part A, Vol. 30, pp. 619-634, 1996.
[24]Beck, J. V., “Surface Heat Flux Determination Using an Integral Method,” Nucl. Eng. Des., Vol. 7, pp. 170-178 , 1968.
[25]De Yong, L. V., “An Evaluation of Temperature and Heat Flux of Gasless and Gassy Percussion Primers,” Report MRL-R-971, Dep. of Defense, Defense Science and Technology Organization Materials Research Lab. Melbourne, Victoria, Aug, pp. 121-158, 1985.
[26]Evans, N. A. and Brezowski, C. F., “The Effect of Charge Mixture Ration and Particle Size on Igniter Plume Heat Transfer Characteristics,” Explosive Subsystems Division 2512 Sandia National Laboratories Albuquerque, NM 87185-5800, pp. 150-158, 1990.
[27]Stiefel, L. and Kuo, K. K., “Characterization and Control of the Output of Selected Small Arms Percussion Primer Mixes,” Presented at the International Symposiumon Ballistics, the Hague, Nether lands, pp. 101-115, 1983.
[28]Chen, D. Y., Primer Characterization Study, Chap4 in his Msthesis, The Pennsylvania State University, pp. 174-180, 1990.
[29]Stiefel, L. and Doris, T. A. Tr, “Ingredient Effects on the Thermochemical Output of Small Arms Primers,” Papers Published in the Proceedings of the International Pyrotechnics Seminars, Vol. 9, No. 9, pp. 127, 1984.
[30]Pierce, K. G., “Numerical Routines for Predicting Ignition in Pyrotechnic Devices,” SANDIA Report, pp.86-126, 1986.
[31]Devine, M. P., Squire, W. H., Yoonger, G. A., and Hermance, C. E., “A Comparison of Several Types of 5.56 mm and 7.62mm Primers,” Frankford Arsenal, pa, 19137-ATTEN:SMUFA-38000, R-1932, pp. 74-86, 1969.
[32]Roy, M., Rocket Propulsion, Elsevier Publishing Company, pp. 40-47, 1972.
[33]Luo, K. M., “The Kinetic Parameter and Parameter Effects Factors Calculation of Multicomponent Energetic Materials Decomposition Reaction from a Single Differential Thermal Analysis Curve,” Propellants, Explosives, Pyrotechnic, Vol. 21, pp. 1-12, 1996.
[34]Gordon and Mcbride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations, NASA SP-273, pp. 25-32, 1986.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top