跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 09:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊晉昌
研究生(外文):Chin-Chang Yang
論文名稱:基於模糊相似量測法以達到彩色影像復原的混合型影像過濾器:多重策略進化規劃演算法
論文名稱(外文):Fuzzy Similarity Measure Based Hybrid Image Filter for Color Image Restoration: Multi-methodology Evolutionary Programming
指導教授:郭淑美郭淑美引用關係
指導教授(外文):Shu-Mei Guo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資訊工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:57
中文關鍵詞:脈衝雜訊影像過濾器高斯雜訊進化規劃演算法模糊控制器混合雜訊
外文關鍵詞:image filterimpulse noiseGaussian noisemixed noisefuzzy controllerevolutionary computation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一個基於多重策略進化規劃演算法之模糊相似量測法以達到彩色影像復原的混合型影像過濾器。首先,本論文提出一個多重方法論的進化規劃演算法 (MMEC) 來解決多重目標的最佳化問題,然後提出一個基於相似量測法的混合型影像過濾器以去除雜訊,最後藉由 MMEC 來顯示在相似量測法內的模糊集合以基於經驗的方法來建構是接近最佳的。實驗結果顯示基於模糊相似量測法的混合型影像過濾器可以比受限於函數形狀的傳統向量過濾器以及雙向過濾器達到更佳的過濾品質。此提出的過濾器能夠有效地復原受到脈衝雜訊、高斯雜訊、混合雜訊干擾的彩色影像。
A multi-methodology evolutionary computation and fuzzy similarity measure based hybrid image filter for color image restoration is proposed in this thesis. First, a multi-methodology evolutionary computation (MMEC) is proposed for multi-objective optimization problems. Then, a hybrid image filter with fuzzy-based similarity measure is proposed for noise reduction. Finally, an experience-based construction of fuzzy sets in the similarity measure has been shown as near-optimized via MMEC and is applied to color image restoration. The experimental results show that the proposed fuzzy similarity measure based hybrid image filter can achieve better filtering quality than the classical vector filters and the bilateral filter which are restricted by the shapes of functions themselves. The proposed filter is effective to restore color images contaminated by impulse noise, Gaussian noise, and mixed noise.
摘要 ... I
Abstract ... II
誌謝 ... III
Contents ... IV
List of Tables ... VIII
List of Figures ... IX
Chapter 1. Introduction ... 1
1.1. Survey of Image Restoration ... 1
1.1.1. Bilateral Filtering ... 1
1.1.2. Impulse Detection ... 2
1.1.3. Noise Estimation ... 3
1.1.4. Vector Image Filtering ... 3
1.1.5. Hybrid Filters ... 4
1.1.6. Neuro-fuzzy Filtering ... 4
1.1.7. Genetic-based Filtering ... 5
1.2. Motivation ... 6
1.3. Dissertation Organization ... 6
Chapter 2. Background ... 9
2.1. Weighted Averaging Filter ... 9
2.2. Fuzzy System ... 11
2.2.1. Fuzzy Set ... 11
2.2.2. Fuzzy Controller ... 11
2.3. Evolutionary Programming ... 13
2.4. Chaos-evolutionary-programming Algorithm ... 13
2.4.1. Population Initialization ... 14
2.4.2. Objective Function ... 15
2.4.3. Fitness Function ... 15
2.4.4. Probability Function ... 15
2.4.5. Population Mutation ... 16
2.4.6. Population Selection ... 17
2.4.7. Population Penalty ... 17
2.5. Chaos Optimization Algorithm ... 17
Chapter 3. Multi-methodology Evolutionary Computation ... 20
3.1. Population Initialization ... 20
3.2. Population Evaluation ... 21
3.3. Population Mutation ... 21
3.3.1. PFS based mutation ... 22
3.3.2. HS mutation ... 22
3.4. Population Crossover ... 23
3.4.1. Extrapolation ... 23
3.4.2. Interpolation ... 24
3.5. Population Selection ... 25
3.6. Performance of the Proposed Evolutionary Computation ... 25
Chapter 4. Models of Different Noises ... 31
4.1. Impulse Noise ... 31
4.2. Additive Noise ... 32
4.3. Mixed Noise ... 32
Chapter 5. Hybrid Filtering Process ... 33
5.1. Fuzzy Neighbor Filter ... 33
5.2. Fuzzy Range Filter ... 35
Chapter 6. Fuzzy Number Construction ... 36
6.1. Preprocessing of Initialization ... 36
6.2. Construction of Fuzzy Numbers ... 37
Chapter 7. Experimental Results ... 40
7.1. MMEC to Color Image Restoration ... 40
7.2. Impulse Noise Cancellation ... 43
7.3. Additive Noise Suppression ... 45
7.4. Mixed Noise Filtering ... 47
Chapter 8. Conclusion ... 51
Reference ... 53
Appendix A ... 56
自述 ... 57
[1] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Proc. IEEE Int. Conf. on Computer Vision, Washington DC, USA, 1998, pp. 839–846.
[2] B. Zhang and J. P. Allebach, “Adaptive bilateral filter for sharpness enhancement and noise removal,” IEEE Trans. Image Process., vol. 17, no. 5, pp. 664–678, May 2008.
[3] M. Zhang and B. K. Gunturk, “Multiresolution bilateral filtering for image denoising,” IEEE Trans. Image Process., vol. 17, no. 12, pp. 2324–2333, Dec. 2008.
[4] M. E. Yuksel and E. Besdok, “A simple neuro-fuzzy impulse detector for efficient blur reduction of impulse noise removal operators for digital images,” IEEE Trans. Fuzzy Systems, vol. 12, no. 6, pp. 854–865, Dec. 2004.
[5] R. Garnett, T. Huegerich, C. Chui, and W. He, “A universal noise removal algorithm with an impulse detector,” IEEE Trans. Image Process., vol. 14, no. 11, pp. 1747–1754, Nov. 2005.
[6] S. Schulte, M. Nachtegael, V. D. Witte, D. Van der Weken, and E. E. Kerre, “A fuzzy impulse noise detection and reduction method,” IEEE Trans. Image Process., vol. 15, no. 5, pp. 1153–1162, 2006.
[7] D. Donoho, and I. Johnstone, “Ideal spatial adaptation by wavelet shrinkage,” Biometrika vol. 81, pp. 425–455, 1994.
[8] S. Aja-Fernandez, G. Vegas-Sanchez-Ferrero, M. Martin-Fernandez, and C. Alberola-Lopez, “Automatic noise estimation in images using local statistics. Additive and multiplicative cases,” Image and Vision Computing, in press.
[9] J. Astola, P. Haavisto, and Y. Neuov, “Vector median filter,” Proc. IEEE, vol. 78, no. 4, pp. 678–689, Apr. 1990.
[10] P. E. Trahanias and A. N. Venetsanopoulos, “Vector directional filters: A new class of multichannel image processing filter,” IEEE Trans. Image Process., vol. 2, no. 4, pp. 528–534, Apr. 1993.
[11] D. G. Karakos and P. E. Trahania, “Combining vector median and vector directional filters: the directional-distance filter,” in Proc. IEEE Int. Conf. Image Processing, vol. 1, Washington, DC, Oct. 1995, pp. 171–174.
[12] K. Tang, J. Astola, and Y. Neuvo, “Nonlinear multivariate image filtering techniques,” IEEE Trans. Image Process., vol. 4, no. 6, pp. 788–798, Jun. 1995.
[13] M. Gabbouj and F. A. Cheikh, “Vector median-vector directional hybrid filter for color image restoration,” in Proc. EUSIPCO, vol. 2, Trieste, Italy, Sep. 10–13, 1996, pp. 879–881.
[14] L. Khriji and M. Gabbouj, “Vector median-rational hybrid filters for multichannel image processing,” IEEE Signal Process. Lett., vol. 6, no. 8, pp. 186–190, Aug. 1999.
[15] F. Russo, “Hybrid neuro-fuzzy filter for impulse noise removal,” Pattern Recognit., vol. 32, pp. 1843–1855, 1999.
[16] M. E. Yuksel, “A hybrid neuro-fuzzy filter for edge preserving restoration of images corrupted by impulse noise,” IEEE Trans. Image Process., vol. 15, no. 4, pp. 928–936, Apr. 2006.
[17] Y. Li, F. L. Chung, and S. Wang, “A robust neuro-fuzzy network approach to impulse noise filtering for color images,” Applied Soft Computing, vol. 8, no. 2, pp. 872–884, Mar. 2008.
[18] C. S. Lee, S. M. Guo, and C. Y. Hsu, “Genetic-based fuzzy image filter and its application to image processing,” IEEE Trans. Systems, Man, and Cybernetics Part B, vol. 35, no. 4, pp. 694–711, Aug. 2005.
[19] S. M. Guo, C. S. Lee, and C. Y. Hsu, “An intelligent image agent based on soft-computing techniques for color image processing,” Expert Systems with Applications, vol. 28, no. 3, pp. 483–494, 2005.
[20] N. I. Petrovic and V. Crnojevic, “Universal impulse noise filter based on genetic programming,” IEEE Trans. Image Process., vol. 17, no. 7, pp. 1109–1119, Jul. 2008.
[21] Eric W. Weisstein, “Levenberg-Marquardt Method,” from MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/Levenberg-MarquardtMethod.html
[22] Z. Ma, H. R. Wu, and B. Qiu, “A robust structure-adaptive hybrid vector filter for color image restoration,” IEEE Trans. Image Process., vol. 14, no. 12, pp. 1990–2001, 2005.
[23] S. M. Guo, K. T. Liu, J. S. H. Tsai, and L. S. Shieh, “An observer-based tracker for hybrid interval chaotic systems with saturating inputs: The chaos-evolutionary-programming approach,” Computers and Mathematics with Applications, vol. 55, pp. 1225–1249, 2008.
[24] J. H. Halton, “On the efficiency of certain quasi-random sequences of points in evaluating multidimensional integrals,” Numerische Mathematik, vol. 2, pp. 84–90, 1960 (with Corrigenda on pp. 196).
[25] L. J. Fogel, A. J. Owens, and M. J. Walsh, “Artificial Intelligence through Simulated Evolution,” John Wiley, 1966.
[26] Random, Java™ Platform Standard Ed. 6, Sun Microsystems, Inc [Online]. Available from: <http://java.sun.com/javase/6/docs/api/java/util/Random.html>.
[27] W. D. Richter, “Generalized spherical and simplicial coordinates,” J. Math. Anal. Appl., vol. 336, pp. 1187–1202, 2007.
[28] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger, and S. Tiwari, “Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization,” Nanyang Technol. Univ., Singapore, May 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊