跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱子容
研究生(外文):CHIU, ZI-JUNG
論文名稱:在雌激素受體不表達乳癌中辨別ENSA為候選目標
論文名稱(外文):Identification of ENSA as a Candidate Target in Estrogen Receptor Non-expressing Breast Cancer
指導教授:呂昱瑋
指導教授(外文):LEU, YU-WEI
口試委員:蕭淑惠黃光策
口試委員(外文):HSIAO, SHU-HUEIHUANG, KUANG-TSE
口試日期:2016-07-26
學位類別:碩士
校院名稱:國立中正大學
系所名稱:分子生物研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:57
中文關鍵詞:對位性基因體學去氧核醣核酸甲基化乳癌
外文關鍵詞:EpigeneticsDNA methylationBreast cancer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
在過去的研究中假設抑癌基因 (Tumor suppressor genes) 或二維基因座 (Bivalent loci)異常的去氧核醣核酸甲基化 (DNA methylation) 會導致癌症,因此我的研究主要是: 辨認關鍵的抑癌基因或二維基因座的甲基化是否對於乳癌的發生是必須的。從79對乳癌病人檢體中,我們發現在乳癌病人檢體中的腫瘤區域和相鄰的正常區域中,抑癌基因RassF1A異常甲基化情形有顯著差異。另外,二維基因座ENSA的甲基化也在早期與晚期的乳癌中有顯著差異。接著將表達RassF1A及HIC1之質體轉染至MDA-MB-231及MCF7細胞中,以聚合酶連鎖反應及西方點墨法驗證,並以免疫染色螢光觀察過度表達之細胞,另外透過MTT assay發現在MDA-MB-231細胞中RassF1A及HIC1過度表達會使細胞生長速率下降,在MCF7細胞中則無此情形。
Abnormal DNA methylation within tumor suppressor (TS) genes and/or bivalent loci was hypothesized to cause cancer. Therefore, we aimed to identify the crucial TS or bivalent loci that their methylation might be sufficient for the development of breast cancer. From 79 pairs of breast cancer samples, we found significant RassF1A methylation differences between the tumor and adjacent normal parts. On the other hand, the abnormal ENSA methylation was found to correlate with low and high stage breast cancer progression. At last, overexpressed RassF1A and HIC1 in breast cancer cell lines, MDA-MB-231 and MCF7, was validated by immunostaining and found to only reduce the cell proliferation rate in MDA-MB-231.
謝辭 I
中文摘要 II
英文摘要 III
目錄 IV
圖表目錄 VII
第一章 緒論
第一節 乳癌 (Breast Cancer) 1
第二節 癌症對位性基因體學 (Cancer Epigenetics) 2
第三節 去氧核醣核酸甲基化 (DNA Methylation) 3
第四節Endosulfine alpha (ENSA) 5
第五節 目的 6
第二章 材料與方法
第一節 染色體去氧核醣核酸萃取 8
壹、 細胞染色體去氧核醣核酸萃取 8
貳、病人檢體染色體去氧核醣核酸萃取 9
第二節 亞硫酸氫鹽轉換法 9
第三節 即時半定量甲基化特異性聚合酶連鎖反應 10
第四節 數據分析 11
第五節 細胞培養 12
第六節 細胞轉染 12
第七節 篩選穩定細胞株及驗證 13
第八節 核糖核酸萃取 14
第九節 反轉錄反應 14
第十節 即時定量聚合酶連鎖反應 15
第十一節 西方點墨法 16
壹、蛋白質萃取 16
貳、蛋白質濃度定量 16
參、聚丙烯醯胺膠體製備與電泳 17
肆、轉漬 18
伍、冷光呈色顯影 19
第十二節 免疫螢光染色 19
第十三節 細胞生長速率分析 20
第三章 實驗結果
第一節 乳癌檢體中多櫛家族蛋白質基因座及抑癌基因座甲基化狀態 22
第二節 多櫛家族蛋白質基因座與抑癌基因座在乳癌檢體中的甲基化狀態可區分成兩類 23
第三節 特定基因的甲基化與乳癌檢體的臨床病理特徵相關 23
第四節 在乳癌細胞株中表達RassF1A和HIC1 24
第四章 討論 26
參考文獻 28
圖表 36


1.Torre, L.A., Bray, F., Siegel, R.L., Ferlay, J., Lortet-Tieulent, J., and Jemal, A. (2015). Global cancer statistics, 2012. CA Cancer J Clin 65, 87-108.
2.Schnitt, S.J. (2010). Classification and prognosis of invasive breast cancer: from morphology to molecular taxonomy. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 23 Suppl 2, S60-64.
3.Onitilo, A.A., Engel, J.M., Greenlee, R.T., and Mukesh, B.N. (2009). Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinicopathologic features and survival. Clinical medicine & research 7, 4-13.
4.Dunnwald, L.K., Rossing, M.A., and Li, C.I. (2007). Hormone receptor status, tumor characteristics, and prognosis: a prospective cohort of breast cancer patients. Breast cancer research : BCR 9, R6.
5.Chavez, K.J., Garimella, S.V., and Lipkowitz, S. (2010). Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer. Breast disease 32, 35-48.
6.Apostolou, P., and Fostira, F. (2013). Hereditary breast cancer: the era of new susceptibility genes. BioMed research international 2013, 747318.
7.Conway, K., Edmiston, S.N., May, R., Kuan, P.F., Chu, H., Bryant, C., Tse, C.K., Swift-Scanlan, T., Geradts, J., Troester, M.A., et al. (2014). DNA methylation profiling in the Carolina Breast Cancer Study defines cancer subclasses differing in clinicopathologic characteristics and survival. Breast cancer research : BCR 16, 450.
8.Sadikovic, B., Al-Romaih, K., Squire, J.A., and Zielenska, M. (2008). Cause and consequences of genetic and epigenetic alterations in human cancer. Current genomics 9, 394-408.
9.Jones, P.A., and Baylin, S.B. (2007). The epigenomics of cancer. Cell 128, 683-692.
10. Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes & development 16, 6-21.
11. Chuang, J.C., and Jones, P.A. (2007). Epigenetics and microRNAs. Pediatric research 61, 24r-29r.
12. Sharma, S., Kelly, T.K., and Jones, P.A. (2010). Epigenetics in cancer. Carcinogenesis 31, 27-36.
13. Robertson, K.D. (2005). DNA methylation and human disease. Nature reviews Genetics 6, 597-610.
14. Simmons, D. (2008) Epigenetic influence and disease. Nature Education 1(1):6.
15. Baylin, S.B. (2005). DNA methylation and gene silencing in cancer. Nature clinical practice Oncology 2 Suppl 1, S4-11.
16. Yoo, C.B., and Jones, P.A. (2006). Epigenetic therapy of cancer: past, present and future. Nature reviews Drug discovery 5, 37-50.
17. Egger, G., Liang, G., Aparicio, A., and Jones, P.A. (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457-463.
18. Deaton, A.M., and Bird, A. (2011). CpG islands and the regulation of transcription. Genes & development 25, 1010-1022.
19. Jones, P.A., and Takai, D. (2001). The role of DNA methylation in mammalian epigenetics. Science (New York, NY) 293, 1068-1070.
20. Bestor, T.H. (2000). The DNA methyltransferases of mammals. Human molecular genetics 9, 2395-2402.
21. Okano, M., Bell, D.W., Haber, D.A., and Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247-257.
22. Okano, M., Xie, S., and Li, E. (1998). Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature genetics 19, 219-220.
23. Klose, R.J., and Bird, A.P. (2006). Genomic DNA methylation: the mark and its mediators. Trends in biochemical sciences 31, 89-97.
24. Bogdanovic, O., and Veenstra, G.J. (2009). DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma 118, 549-565.
25. Jones, P.A., and Laird, P.W. (1999). Cancer epigenetics comes of age. Nature genetics 21, 163-167.
26. Das, P.M., and Singal, R. (2004). DNA methylation and cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 22, 4632-4642.
27. Rasti, M., Tavasoli, P., Monabati, A., and Entezam, M. (2009). Association between HIC1 and RASSF1A promoter hypermethylation with MTHFD1 G1958A polymorphism and clinicopathological features of breast cancer in Iranian patients. Iranian biomedical journal 13, 199-206.
28. Lee, W.H., Morton, R.A., Epstein, J.I., Brooks, J.D., Campbell, P.A., Bova, G.S., Hsieh, W.S., Isaacs, W.B., and Nelson, W.G. (1994). Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America 91, 11733-11737.
29. Melki, J.R., Vincent, P.C., and Clark, S.J. (1999). Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer research 59, 3730-3740.
30. Ku, M., Koche, R.P., Rheinbay, E., Mendenhall, E.M., Endoh, M., Mikkelsen, T.S., Presser, A., Nusbaum, C., Xie, X., Chi, A.S., et al. (2008). Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS genetics 4, e1000242.
31. Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B., and Cavalli, G. (2007). Genome regulation by polycomb and trithorax proteins. Cell 128, 735-745.
32. Azuara, V., Perry, P., Sauer, S., Spivakov, M., Jorgensen, H.F., John, R.M., Gouti, M., Casanova, M., Warnes, G., Merkenschlager, M., et al. (2006). Chromatin signatures of pluripotent cell lines. Nature cell biology 8, 532-538.
33. Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315-326.
34. Hsiao, S.H., Huang, T.H., and Leu, Y.W. (2009). Excavating relics of DNA methylation changes during the development of neoplasia. Seminars in cancer biology 19, 198-208.

35. Heron, L., Virsolvy, A., Peyrollier, K., Gribble, F.M., Le Cam, A., Ashcroft, F.M., and Bataille, D. (1998). Human alpha-endosulfine, a possible regulator of sulfonylurea-sensitive KATP channel: molecular cloning, expression and biological properties. Proceedings of the National Academy of Sciences of the United States of America 95, 8387-8391.
36. Heron, L., Virsolvy, A., Apiou, F., Le Cam, A., and Bataille, D. (1999). Isolation, characterization, and chromosomal localization of the human ENSA gene that encodes alpha-endosulfine, a regulator of beta-cell K(ATP) channels. Diabetes 48, 1873-1876.
37. Wang, H., Craig, R.L., Schay, J., Chu, W., Das, S.K., Zhang, Z., and Elbein, S.C. (2004). Alpha-endosulfine, a positional and functional candidate gene for type 2 diabetes: molecular screening, association studies, and role in reduced insulin secretion. Molecular genetics and metabolism 81, 9-15.
38. Lorca, T., and Castro, A. (2013). The Greatwall kinase: a new pathway in the control of the cell cycle. Oncogene 32, 537-543.
39. Teng, I.W., Hou, P.C., Lee, K.D., Chu, P.Y., Yeh, K.T., Jin, V.X., Tseng, M.J., Tsai, S.J., Chang, Y.S., Wu, C.S., et al. (2011). Targeted methylation of two tumor suppressor genes is sufficient to transform mesenchymal stem cells into cancer stem/initiating cells. Cancer research 71, 4653-4663.
40. Chen, Y.L., Ko, C.J., Lin, P.Y., Chuang, W.L., Hsu, C.C., Chu, P.Y., Pai, M.Y., Chang, C.C., Kuo, M.H., Chu, Y.R., et al. (2012). Clustered DNA methylation changes in polycomb target genes in early-stage liver cancer. Biochemical and biophysical research communications 425, 290-296.
41. Quackenbush, J. (2002). Microarray data normalization and transformation. Nature genetics 32 Suppl, 496-501.
42.Berger, J.A., Hautaniemi, S., Jarvinen, A.K., Edgren, H., Mitra, S.K., and Astola, J. (2004). Optimized LOWESS normalization parameter selection for DNA microarray data. BMC bioinformatics 5, 194.
43. Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E.S., and Golub, T.R. (1999). Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proceedings of the National Academy of Sciences of the United States of America 96, 2907-2912.
44. Garrigues, G.E., Cho, D.R., Rubash, H.E., Goldring, S.R., Herndon, J.H., and Shanbhag, A.S. (2005). Gene expression clustering using self-organizing maps: analysis of the macrophage response to particulate biomaterials. Biomaterials 26, 2933-2945.
45. Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., Shadick, N.A., and Reich, D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nature genetics 38, 904-909.
46. Yeung, K.Y., and Ruzzo, W.L. (2001). Principal component analysis for clustering gene expression data. Bioinformatics (Oxford, England) 17, 763-774.
47. Liu, L., Tommasi, S., Lee, D.H., Dammann, R., and Pfeifer, G.P. (2003). Control of microtubule stability by the RASSF1A tumor suppressor. Oncogene 22, 8125-8136.
48. Song, M.S., Song, S.J., Ayad, N.G., Chang, J.S., Lee, J.H., Hong, H.K., Lee, H., Choi, N., Kim, J., Kim, H., et al. (2004). The tumour suppressor RASSF1A regulates mitosis by inhibiting the APC-Cdc20 complex. Nature cell biology 6, 129-137.
49. Chen, Y.L., Kuo, M.H., Lin, P.Y., Chuang, W.L., Hsu, C.C., Chu, P.Y., Lee, C.H., Huang, T.H., Leu, Y.W., and Hsiao, S.H. (2013). ENSA expression correlates with attenuated tumor propagation in liver cancer. Biochemical and biophysical research communications 442, 56-61.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊