跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 10:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林正清
研究生(外文):Lin, Cheng-ching
論文名稱:台灣全民健康保險糖尿病資料庫有關之研究
論文名稱(外文):DIABETES RESEARCH OF INSURANCE CLAIMS DATA IN TAIWAN
指導教授:賴美淑賴美淑引用關係
指導教授(外文):Lai, Mei-Shu, M.D. ,PhD
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:預防醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:112
中文關鍵詞:健康保險資料庫正確性糖尿病
外文關鍵詞:INSURANCE CLAIMS DATAAccuracyDiabetes
相關次數:
  • 被引用被引用:26
  • 點閱點閱:2301
  • 評分評分:
  • 下載下載:179
  • 收藏至我的研究室書目清單書目收藏:5
背景:國外健康保險申報資料庫的研究,正確性多介於64%至82%之間。而台灣目前還沒有針對特定單一疾病做申報資料的正確性分析,所以本研究目的是要評估台灣全民健保申報糖尿病資料的正確性,以及影響全民健保申報糖尿病資料正確性的因素,並建構預測全民健保糖尿病資料正確性的預測模式,與估算台灣地區糖尿病的盛行率。
研究方法:有關利用率分析,取自全民健保2000年全國醫院、診所申報所有糖尿病病人資料分析。在正確性分析方面,從全民健保所有糖尿病病人資料,以分層、兩階段、PPS與等機率方法抽樣9,000人寄發問卷。以病人自述病情問卷為黃金標準,分析1,350份問卷,並串聯藥物醫令檔以求得全民健保申報資料的正確性,再利用邏輯式迴歸(Logistic Regression)分析影響因素,且利用E-M Algorithm方法求得預測全民健保糖尿病資料正確性的預測模式。
結果:利用率分析方面,糖尿病病人每年因糖尿病原因(全部原因)的門診、急診與住院次數為8.51(30.04)、0.10(0.50)與0.30(0.48)次,整年度花費共242.77(531.38)億元,住院費用即佔55.07%(41.23%)。糖尿病病人之就醫地點主要為醫院,佔78.64%,就醫科別則以內科為主,佔70.72%。正確性分析方面,1,350份問卷中確定有糖尿病者1,007人,佔74.59%。經單變項分析對正確性有影響的因素為醫院評鑑等級、病人年齡、性別、就醫科別、併發症種類、門診、急診與住院次數。多變項邏輯式迴歸分析發現,影響正確性的因素有病人門診次數、住院次數、年齡與醫院評鑑等級。利用E-M Algorithm方法求得預測全民健保糖尿病資料正確性的預測模式為Logit P= -23.08 + (-3.75*醫院評鑑等級) + (5.78*年齡) + (14.30*病人住院次數) + (17.29*病人門診次數)。由預測模式估算,2000年全民健保糖尿病資料的正確性為70.42%,台灣地區糖尿病全人口盛行率為2.844%,四十歲以上盛行率為7.576%。若考慮加上未被診斷的糖尿病患者,台灣目前可能有103萬個糖尿病病人。
結論:2000年全民健保申報糖尿病資料的正確性是70.42%,若只取門診三次以上才認定為糖尿病個案,則正確性就提高為88.81%。另以預測模式估算,其正確性為89.19%,若再加入藥物醫令檔資料,其正確性就高達為91.41%。未來,將可以此預測模式作為利用率分析之調整。
Background: Overall accuracy of insurance claims data from the National Health Insurance database is around 64%~82% in other countries. In Taiwan, there has been no study about accuracy of insurance claims data for specific disease yet. Therefore, the objectives of this study are to evaluate accuracy of diabetes insurance claims data in Taiwan, to analyze factors influencing accuracy, to build up a predicting model for diabetes insurance claims data, and to estimate the diabetes prevalence rate in Taiwan based on this model.
Methods: We use diabetes claims data reported from hospitals and clinics in 2000 on utilization analysis. For accuracy analysis, 9,000 diabetes patients are sampled from the National Health Insurance Research Database by using stratified, two-staged, PPS (probability proportional to size), and equal probability sampling method. The golden standard is based on patients’ self-reports from mailing questionnaires. Besides, data is modified by linkage with pharmacy claims data. We apply the logistic regression analysis to examine the factors relevant to accuracy of insurance claims data. We also use the method of E-M Algorithm to derive the predicting model for accuracy of diabetes insurance claims data.
Results: We find that average times of outpatient visits, emergent visits, and hospitalization due to diabetes (all causes) are 8.51 (30.34), 0.10 (0.50), and 0.30 (0.48), separately. The total expenditure on diabetes is NTD 24.277 (53.138) billion, 55.07% (41.23%) for hospitalization. Diabetes is mainly followed up in the hospital (78.64%) and medical department accounts for 70.72%. We collect 1,350 questionnaires and define 1,007 (74.59%) as diabetes cases. Univariate analysis indicates that the rank of assessment on hospitals, age, sex, follow-up department, types of complication, times of outpatient and emergent visits as well as hospitalization are factors influencing accuracy. Multivariate logistic regression analysis shows that times of outpatient visits and hospitalization, age, and the rank of assessment on hospitals are statistically significant. By the method of E-M Algorithm, we conclude that the equation in our predicting model is: logit p= -23.08 + (-3.75* the rank of assessment on hospitals) + (5.78*age) + (14.30* times of hospitalization) + (17.29* times of outpatient visits). Based on the model, we estimate that accuracy of diabetes insurance claims data in Taiwan is 70.42%. The overall prevalence rate of diagnosed diabetes is 2.84% and that of the age over 40 is 7.576%. There will be approximately 1.03 million diabetes patients in Taiwan when undiagnosed cases incorporated.
Conclusions: In Taiwan, accuracy of diabetes insurance claims data is 70.42%. If patients with more than three times of outpatient visits are selected as diabetes cases, accuracy will increase to 88.81%. Accuracy estimated by our predicting model is 89.19%. The result will be 91.41% if data rectified by pharmacy claims data. We hope that application of the model in our study can be helpful to justify utilization analysis.
摘要 1
第壹章 緒論 4
第一節 研究背景 4
第二節 研究目的 7
第貳章 文獻探討 8
第一節 國外研究健康保險申報資料庫正確性的情況 10
第二節國外研究健康保險申報資料庫單一種疾病正確性的情況 13
一、有關糖尿病 13
二、其他疾病 14
第三節 國內研究健康保險申報資料庫正確性的情況 16
第四節 以病人自述病情的方法研究正確性資料有關文獻 18
第參章 研究材料與方法 21
第一節 研究流程與架構 21
一、研究流程 21
二、研究架構 22
第二節 研究材料與方法 23
一、目標族群的建立 23
二、研究族群的建立 25
三、樣本族群的建立 27
四、預後的測量:糖尿病個案的確定。 28
五、分析評估影響全民健保申報資料正確性的因素。 28
六、建構全民健保糖尿病資料正確性的預測模式 31
七、利用預測模式估算台灣糖尿病的盛行率。 31
第三節 研究變項與操作型定義 33
一、依變項: 33
二、自變項: 33
第四節資料處理與分析 35
第肆章 結果 36
第一部分 2000年全民健保糖尿病資料的利用率分析 36
第一節 整體分析 36
一、盛行率 36
二、門、急診與住院利用率 37
三、費用利用情況 38
第二節 依年齡別分析 42
一、盛行率 42
二、門診利用率 42
三、急診利用率 43
四、住院利用率 43
五、費用利用情況 44
第三節 依醫院評鑑等級分析 50
一、利用率 50
二、門、急診與住院利用率 50
三、費用利用情況 51
第四節 依就醫科別分析 55
一、利用率 55
二、門、急診與住院利用率 55
三、費用利用情況 56
第二部分 全民健保糖尿病資料的正確性分析 58
第一節 研究族群與目標族體,樣本族群與研究族群之比較 58
一、研究族群與目標族群之比較 58
二、樣本族群與研究族群之比較 59
第二節 樣本族群的初步結果 65
第三節 評估影響全民健保糖尿病資料正確性的因素 66
一、醫療提供方面: 66
二、病人基本資料: 67
三、影響正確性因素之多變項邏輯式回歸分析: 69
第四節、建構全民健保糖尿病資料正確性之預測模式 74
一、預測模式之建構 74
二、正確性影響因素之相關分析 76
三、預測模式之分析流程圖 80
四、預測模式之正確性 82
第五節 利用預測模式估算台灣已被診斷糖尿病的盛行率 84
一、2000年台灣全民健保糖尿病資料的正確性 84
二、估算台灣已被診斷糖尿病的盛行率 84
第伍章 討論與結論 86
第一節 討論 86
第一部分、全民健保糖尿病資料利用率分析 86
第二部分、全民健保糖尿病資料正確性分析 88
第二節 研究限制 92
第三節結論與建議 94
一、結論 94
二、建議 96
參考文獻 97
附錄 106
英文部分
1. Roos NP, Wennberg JE, Malenka DJ, Fisher ES, McPherson K, Andersen TF, et al. Mortality and reoperation after open and transurethral resection of the parostate for benign prostatic hyperplasia. N Engl J Med. 1989;320:1120-4.
2. Weiner JP, Powe NR, Steinwachs DM, Dent G. Applying insurance claims data to assess quality of care: a compilation of potential indicators. QRB. 1990;16:424-38.
3. Jencks SF, Daley J, Draper D, Thomas N, Lenhart G, Walker J. Interpreting hospital mortality data. The role of clinical risk adjustment. JAMA. 1998;260:3611-6.
4. Daley J, Jencks S, Draper D, Lenhart G, Thomas N, Walker J. Predicting hospital-associated mortality for Medicare patients. A method for patients with stroke, pneumonia, acute myocardial infarction, and congestive heart failure. JAMA. 1988;260:3617-24,
5. Wennberg JE, Roos N, Sola L, Schori A, Jaffe R. Use of claims data systems to evaluate health care outcomes. Mortality and reoperation following prostatectomy. JAMA. 1987;257:933-6.
6. Ray WA, Griffin MR. Use of Medicaid data for pharmacoepidemiology. Am J Epidemiol. 1989;129:837-49.
7. Carmeli Y, Mozaffari E. Use of insurance claims data to assess outpatient antimicrobial therapy for gram-positive infections. Pharmacotherapy. 2002;22:55S-62S.
8. Gilbody SM, House AO, Sheldon TA. Outcomes research in mental health. Br J Psychiatry. 2002;181:8-16.
9. Hillman BJ, Joseph CA, Mabry MR, Sunshine JH, Kennedy SD, Noether M. Frequency and costs of diagnostic imaging in office practice: A comparison of self-referring and radiologist-referring physicians. N Engl J Med 1990;323:1604-8.
10. Steinberg EP, Whittle J, Anderson GF. Impact of claims data research on clinical practice. Int J Technol Assess Health Care. 1990;6:282-7.
11. Quam L, Ellis LB, Venus P, Clouse J, Taylor CG, Leatherman S. Using claims data for epidemiologic research. Med Care. 1993;31:498-507.
12. Hux JE, Ivis F, Flintoft V, Bica A. Diabetes in Ontario: determination of prevalence and incidence using a validated administrative data algorithm. Diabetes Care. 2002;25:512-6.
13. Roos LL Jr, Roos NP, Cageorge SM, Nicol JP. How good are the data? Reliability of one health care data bank. Med Care. 1982;20:266-76.
14. Roos LL Jr, Cageorge SM, Austen E, Lohr KN. Using computers to identify complications after surgery. Am J Public Health. 1985;75:1288-95.
15. Mullin RL. Diagnosis-related groups and severity. ICD-9-CM, the real problem. JAMA. 1985;254:1208-10.
16. Jencks SF, Williams DK, Kay TL. Assessing hospital- associated deaths from discharge data. The role of length of stay and comorbidities. JAMA. 1988;260:2240-6.
17. Hsia DC, Krushat WM, Fagan AB, Tebbutt JA, Kusserow RP. Accuracy of diagnostic coding for Medicare patients under the prospective-payment system. N Engl J Med 1988;318:352-5.
18. Institute of Medicine. Reliability of Medicare hospital discharge records. Washington, DC: National Academy of Sciences, 1977.
19. Fisher ES, Whaley FS, Krushat WM, Malenka DJ, Fleming C, Baron JA, et al. The accuracy of Medicare''s hospital claims data: progress has been made, but problems remain. Am J Public Health. 1992;82:243-8.
20. Demlo LK, Campbell PM, Brown SS. Reliability of information abstracted from patients'' medical records. Med Care. 1978;16:995-1005.
21. Jollis JG, Ancukiewicz M, DeLong ER, Pryor DB, Muhlbaier LH, Mark DB. Discordance of databases designed for claims payment versus clinical information systems. Implications for outcomes research. Ann Intern Med. 1993;119:844-50.
22. Cooper GS, Yuan Z, Stange KC, Dennis LK, Amini SB, Rimm AA. The sensitivity of Medicare claims data for case ascertainment of six common cancers. Med Care. 1999;37:436-44.
23. Melfi CA, Croghan TW. Use of claims data for research on treatment and outcomes of depression care. Med Care. 1999;37:AS77-80.
24. Servais C. Computer assisted coding quality management. J Ahima. 1992;63:42-9.
25. Holderman NF. DRG 468: an analysis of data quality. JAMRA. 1988;59:30-3.
26. Hebert PL, Geiss LS, Tierney EF, Engelgau MM, Yawn BP, McBean AM. Identifying persons with diabetes using Medicare claims data. Am J Med Qual. 1999;14:270-7.
27. Pinfold SP, Goel V, Sawka C. Quality of hospital discharge and physician data for type of breast cancer surgery. Med Care. 2000;38:99-107.
28. Currie MS. Clinical data quality: impact on revenue. JAMRA. 1985;56:25-7.
29. Gordis L. Assuring the quality of questionnaire data in epidemiologic research. Am J Epidemiol 1979;109:21-4.
30. Feinstein AR, Horwitz RI. Double standards, scientific methods, and epidemiologic research. N Engl J Med 1982;307:1611-7.
31. Paganini-Hill A, Ross RK. Reliability of recall of drug usage and other health-related information. Am J Epidemiol 1982;116:114-22.
32. Kehoe R, Wu SY, Leske MC, Chylack LT. Comparing self-reported and physician-reports medical history. Am J Epidemiol. 1994;139:813-8.
33. Mackenbach JP, Looman CW, van der Meer JB. Differences in the misreporting of chronic conditions, by level of education: the effect on inequalities in prevalence rates. Am J Public Health. 1996;86:706-11.
34. Martin LM, Leff M, Calonge N, Garrett C, Nelson DE. Validation of self-reported chronic conditions and health services in a managed care population. Am J Prev Med 2000;18:215-8.
35. Kriegsman DMW, Penninx BWJ, van Eijk JTM, Boeke AJP, Deeg DJH. Self-reports and general practitioner information on the presence of chronic disease in Community Dwelling Elderly. J Clin Epidemiol 1996;49:1407-17.
36. Lin JD, Shieh WB, Huang MJ, Huang HS. Diabetes mellitus and hpertension based on the family history and 2-h postprandial blood sugar in the Ann-Lo district (Northern Taiwan). Diabetes Res Clin Pract 1993;20:75-85.
37. Chou P, Chen HH, Hsiao KJ. Community-ba sed epidemiological study on diabetes in Pu-Li, Taiwan. Diabetes Care 1992;15:81-9.
38. Chou P, Li CL, Tsai ST. Epidemiology of type 2 diabetes in Taiwan. Diabetes Res Clin Pract 2001;39:S29-35.
39. Park Y, Lee H, Koh CS, Min H, Yoo K, Kim Y, et al. Prevalence of diabetes and IGT in Yonchon County, South Korea. Diabetes Care. 1995;18:545-8.
40. Tan CE, Emmanuel SC, Tan BY, Jacob E. Prevalence of diabetes and ethnic differences in cardiovascular risk factors. The 1992 Singapore National Health Survey. Diabetes Care. 1999;22:241-7.
41. Takahashi Y, Noda M, Tsugane S, Kuzuya T, Ito C, Kadowaki T. Prevalence of diabetes estimated by plasma glucose criteria combined with standardized measurement of HbA1c among health checkup participants on Miyako Island, Japan. Diabetes Care. 2000;23:1092-6.
42. Pan XR, Yang WY, Li GW, Liu J. Prevalence of diabetes and its risk factors in China, 1994. National Diabetes Prevention and Control Cooperative Group. Diabetes Care. 1997;20:1664-9.
43. Lee ET, Howard BV, Go O, Savage PJ, Fabsitz RR, Robbins DC, et al. Prevalence of undiagnosed diabetes in three American Indian populations. A comparison of the 1997 American Diabetes Association diagnostic criteria and the 1985 World Health Organization diagnostic criteria: the Strong Heart Study. Diabetes Care. 2000;23:181-6.
44. Harris MI, Flegal KM, Cowie CC, Eberhardt MS, Goldstein DE, Little RR, et al. Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults: the Third National Health and Nutrition Examination Survey 1988-1994. Diabetes Care 1998;21:518-24.
45. Gale EA, Gillespie KM. Diabetes and gender. Diabetologia 2001;44:3-15.
46. Moss SE, Klein R, Klein BEK. Risk factors for hospitalization in people with diabetes. Arch Intern Med 1999;159 2053-7.
47. Jiang YD, Chuang LM, Wu HP, Tai TY, Lin BJ. Role of an outpatient clinic in screening chronic complications of diabetes: a model for diabetes managed care. JFMA 1998;97:521-7.
中文部分
48. 魏榮男等人,1996~2000年台灣地區糖尿病盛行率與住院率,台灣衛誌,2002;21(3);173-80。
49. 賴憲良、楊志良、范碧玉:全民健康保險下疾病分類編碼品質與相關影響因素研究。中華衛誌1998;17:337-47。
50. 黃麗秋、范碧玉:委託研究計劃結果摘要報告。病歷管理協會會訊2000;4:14-7。
51. 廖素華、 陳寶輝,疾病分類與醫療收費標準關係之探討,醫院.1990;23:5;222-33。
52. 藍忠孚,全民健保診療報酬預估支付制度之研究(第二年)1995。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top