跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.141) 您好!臺灣時間:2025/10/09 08:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:阮素芬
研究生(外文):Roan Su-Feng
論文名稱:鳥梨實生後裔生育特性調查、評估與矮性植株選拔模式建立
論文名稱(外文):Investigation and Evaluation of Plant Character and Establishment of Dwarfing Pear Selection Model of ''Bird'' Pear Seedlings (Pyrus. sp.)
指導教授:鄭正勇鄭正勇引用關係
指導教授(外文):Cheng Cheng-Yung
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:144
中文關鍵詞:鳥梨實生後裔矮性砧木迴歸分析正向逐步迴歸分析選拔模式溫度
外文關鍵詞:''Bird'' pearpear seedlingdwarf rootstockregression analysisforward stepwise regression analysisselection modeltemperature
相關次數:
  • 被引用被引用:6
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘 要
由卓蘭區、大湖區及三灣區三個主要橫山梨生產地區,蒐集鳥梨自然開放授粉下產生之果實,依序進行1.鳥梨果實特性調查,2.種子發芽試驗,3.後裔植株生育特性調查與評估,4.性狀間之關係及穩定性評估,5.篩選矮性後裔,6.建立篩選模式,期能瞭解本省鳥梨實生後裔植株特性及建立梨砧木矮性植株之篩選系統及模式。
三地區之鳥梨果實以卓蘭區鳥梨之果重、果高、果徑、種子數最少,種子重最小,三灣區鳥梨次之,大湖區鳥梨最大。將卓蘭區鳥梨及大湖區鳥梨種子置於4℃下不同日數後播種,結果顯示,不經低溫處理之種子發芽率極低,且所需發芽日數最長;種子經至少10日以上之4℃低溫處理,發芽整齊度可大幅改善。三族群後裔進行生育特性調查之結果顯示,族群內單株生育特性變異極大,卓蘭區鳥梨實生後裔株高之分布變異最大,其分布可分為 2群,三灣區及大湖區鳥梨後裔之分布較趨近於常態分布。三年之植株連續調查資料顯示,植株生長量隨著株齡增加而增加,族群之表現趨勢相同,並不因環境而有所差異。三區鳥梨族群平均株高以卓蘭區最高,大湖區最矮,大湖區及三灣區鳥梨分枝性小,傾向較屬單幹型,卓蘭區鳥梨分枝極多,生長勢強。
將卓蘭、大湖及三灣三地區之鳥梨實生後裔之主要植株性狀,如節數、節間長度、幹徑、幹截面積、分枝數、枝刺數、樹皮後等幸狀與株高進行相關與迴歸分析,以瞭解各性狀與株高間之相關性。所有性狀與株高之相關係數均達極顯著水準,除了樹皮與幹徑之比值與株高之關係為負相關外,其餘性狀均呈正相關。第一年之結果以株高與幹徑的相關係數最高;第二年之後大致以株高與節數的相關係數最高。第三年在三區所有性狀中株高與節數的相關係數最高,分別為0.956、0.917及0.937;次高者為株高與幹徑之相關係數,分別為0.865、0.870及0.907;其他性狀之相關係數,在系統間高低雖略有變動,但以節間長度及幹截面積較高,在0.66~0.84間,其餘各性狀則大多低於0.7;各系統株高與枝刺數及株高與分枝數之相關係數則略有差異。
進行三個年度株高間與株高對非當年之植株生長性狀作迴歸、相關分析及正向逐步迴歸分析,以檢定年度間各性狀表現的穩定性。此三系統株高三年間及株高與其他年度間之植株性狀間相關之穩定性,除了節數及第一年之分枝數外,均屬於穩定之水準,其中相隔一年間之相關性與可信賴程度,較相隔兩年者高,而且此種穩定性隨株齡增加而提高,其中,節數之變異性較大,可能是受到生長環境與株齡之影響。由此項分析結果,可知幹徑、節間長、幹徑面積應為較穩定之性狀。三年株高間之正向逐步迴歸分析顯示,相隔一年的株高的影響力極大,相隔兩年之影響力則減少,故第二年株高即具有極高之代表性。以系統間比較時,三灣系年度間之表現明顯較其他系統穩定。
進一步檢定實生後裔對溫度的穩定性,將採自卓蘭與大湖地區之鳥梨開放授粉種子,經2週5oC處理後,播種取得之實生後裔,移植於6吋盆,置於日/夜溫分別為30/25 oC、25/20 oC、20/15 oC、15/13 oC之生長環境,並以自然條件作為對照,比較其生長狀況。初期(100日內)生長隨溫度之增高而增加,處理150日後,20/15 oC以上及自然狀況之植株生長速度減緩,但在15/13 oC處理者生長速率維持不變,甚至略增,導致其在處理結束後,株高反而最高。各處理間節數差異不大,但節間長度明顯隨著溫度下降而增長,此外,株高與幹徑、幹截面積間呈一次迴歸,株高與枝刺數、分枝數間之迴歸關係則均會因溫度之不同而改變。卓蘭地區鳥梨之株高與節數、節間長度、幹徑、幹截面積之相關性均達極顯著或顯著水準,且較不受溫度所影響;大湖地區鳥梨則在幹徑與幹截面積之表現較穩定。由試驗結果顯示,二地區鳥梨在表現型上的差異極大,且部分性狀會隨著溫度而改變,故以高度為選拔目標時,溫度變級的處理,應是必要的措施。
利用田間生長資料及田間觀察配合迴歸與相關分析,初步篩選鳥梨實生後裔44單株,獲選單株進一步嫁接於鳥梨扦插苗上,以嫁接苗生長特性配合原單株之三年生育資料、利用族群性狀之迴歸分析、信賴區間及預測區間評估獲選植株在族群中的分布地位,以排序法評估年度間之穩定性,最後將獲選植株之生長資料以平均值為中心,用0.4個標準偏差為組距,區分為9級,將各植株之調查資料由絕對值轉換為相對值,再評估其年度間之穩定性,配合排序法及九等分法來評估各單株表現後,再選拔穩定呈現中至矮之20單株及5個對照單株供進一步試驗用。最後利用Excel軟體中之運算與邏輯函數,製作矮性梨樹選拔過程中所需之表格,並利用其中之篩選功能,選拔理想植株,同時所撰寫之程式及格式,可擴大運用於族群中龐大數據及運算複雜之試驗,來減輕工作負擔及增加精確度。
Investigation and Evaluation of Plant Characters and Establishment of Dwarfing Pear Selection Model of ‘Bird’ Pear Seedlings (Pyrus sp.)
Abstract
Open pollinated ''Bird'' pears were collected from Chuo-lan, Da-hu and San-wan for a series of experiments. The experiments were to be conducted by the order of (1) to survey fruit characters, (2) to conduct seed germination experiment, (3) to survey and assess the growth and the development of the seedling, (4) to evaluate the stability and relationship between plant height and other plant traits within three years, (5) to select the seedlings with dwarf characters, and (6) to establish dwarfing selection model of ‘Bird’ pear.
The fruit collected from Da-hu had the largest fruit size, the most numbers of seeds and the heaviest fruit weight, which was followed by San-wan’s fruits and then the Chuo-lan’s fruits. San-wan’s fruite had the smallest seed size and Da-hu the largest. Seeds of Chuo-lan and Da-hu, sown in natural conditions had an extremely low germination rate and a much longer germination period. This situation can be improved if the seeds are stratified under 4℃ for several days. Germination conditions will be greatly improved if the seeds can be stored under 4℃ for more than ten days. Growth characters varied among the three groups of seedling population, particularly the seedlings from Chuo-lan that could be divided into two groups according to the plant height. The frequency distributions of the plant height of seedlings from Da-hu and San-wan were close to the normal distribution. After a three-year survey, the results showed that the plant height of the second year was higher than that of the first year, and all of the population had the same performance of frequency distribution and tendency. The plant from Chuo-lan had the highest plant height and the most branches. The plant from Da-hu had the shortest plant height and the fewest branches.
To understand the relationship between each plant’s characteristics and the plant height, the characters of ''Bird'' pear seedlings in the three areas were correlated and by regression analyses. It was found that the characters of seedlings were related to the plant height. Most of the characters had positive correlation with the plant height except for the bark and the trunk diameter, which were in negative correlation with the plant height. The result of the first year showed that the trunk diameter had a strong correlation with the plant height, though the number of nodes had a strong correlation with the plant height after the second year. In the third year the highest correlation with the plant height was found to be with the number of nodes. The correlation coefficient for Chuo-lan was 0.956, 0.917 for Da-hu, and 0.937 for San-wan. The second highest correlation with the plant height was the trunk diameter. The correlation coefficient was 0.865 for Chuo-lan, 0.870 for Da-hu, and 0.907 for San-wan. For most of the other characters, the correlation coefficients stayed under 0.7 in all three lines except from the characters of the length between nodes and the trunk cross-section area. The two characters had slightly higher correlation coefficients with the plant height, around 0.66 to 0.84. The number of thorns and branches showed large differentiation between the three lines, hence these characters should be considered as essential variables to be correlated with the plant height.
In order to investigate the stability of plant characteristic performances in each year, the plant heights in three years and the one-year plant height were cross-examined with the plant characters of another year by simple regression analysis and forward stepwise regression analysis. Most characters were stable except that the node numbers and the branch numbers were cross-examined with the plant height of another year. The credibility and correlation were confirmed through an interval of two years rather than one, and the stability increases with an increasing age of the plant. The instability in the correlation between the node numbers and the plant height was probably caused by the growing environment and the plant age. Trunk diameter, length of inter-node, and trunk cross-section area were stable characters.
The forward stepwise regression analysis in three years showed that plant height of an interval of one year is much greater than that of two years, hence the plant height in the second year is a decisive year. Stability compared among the three areas showed that San-wan had the most stable overall correlation ratio of plant characters and plant height.
The open pollinated seedlings of ''Bird'' pear from Chuo-Lan and Da-hu areas were planted in 6-inch pots and treated under 5 ℃ for two weeks. Then the seedlings were placed in various environments with different day/night temperatures at 30/25 ℃, 25/20 ℃, 20/15 ℃, and 15/13 ℃ (day /night ℃), together with the control group that are treated in field conditions. At the beginning (within 100 days) the growth and growth rate of the seedlings increased with an increasing temperature. Both of the growth rates of the group treated by the day/night temperatures above 20/15℃ and the control group decreased sharply. The growth rate of the seedlings treated by the day/night temperatures of 15/13 ℃ either remained steady or increased slightly, which reached the largest plant height. The number of node under different treatments remained the same. The length of inter-node decreased significantly with an increasing temperature. Also, the trunk diameter, the cross-section area of the trunk showed simple regression and the number of thorns and branches varied with different treatments. High multiple regression coefficients between the plant height and the number of nodes, the length of inter-node, the trunk diameter, and the trunk cross-section area were found in all treatments in the plants collected from Chuo-lan. Temperature seemed to affect more on the correlation between the plant height and other characters of the plants collected from Da-hu. The results had shown that the performance of phenotypes was quite different between the ''Bird'' pear seedlings from Chuo-lan and Da-hu. It was also shown that some plant characters were affected by temperature. Therefore various temperature treatments are required to understand the performance of plant height.
Through field growth data, field survey, regression, and correlation analysis, 44 ''Bird'' pear seedlings were selected. The chosen seedlings were grafted on to ''Bird'' pear cutting. The growth characters of grafted sapling, the three-year data of growth characteristic of the original seedlings together, and the confidence and prediction intervals determined the distribution of selected seedlings in the population. In addition, the ranking method was used to evaluate the stability in each year. By taking the average of the selected seedlings as the center point and 0.4 the standard deviations of the class interval between each rank, the selected seedlings were divided into nine ranks. The results of the re-evaluation of the nine ranks provided further information in the selection and evaluation. According to the data, 20 plants and 5 plants for control were selected for further tests.
By utilizing the calculation, the logical function, graphs, and filtering functions in ‘Windows Excel’, it was possible for the ideal selection of the seedlings for dwarfing pear trees. Through programming, it is possible to reduce workload and improve in accuracy in the data processing of complicated experiments.
封面
內容目次
摘要
壹 前言
貳 前人研究
參 鳥梨實生後裔特性調查
摘要
前言
材料與方法
結果與討論
肆 鳥梨實生後裔育特性與株高之關係
摘要
前言
材料與方法
結果與討論
伍 利用年度間之迴歸分析評估性狀表現之穩定性
摘要
前言
材料與方法
結果與討論
陸 溫度對鳥梨實生後裔幼苗生長及植株性狀間迴歸與相關之影響
摘要
前言
材料與方法
結果與討論
柒 矮生鳥梨實生後裔選拔
摘要
前言
材料與方法
結果與討論
捌 結論
英文摘要
參考文獻
附錄
參考文獻
王宇霖. 1984. 落葉果樹種類學. 農業出版社. P.150-207.
王中英、陳克亮、王藝. 1993. 果樹栽培新技術集錦. 中國農業出版社.
王中英. 1995. 矮化蘋果樹營養生理. 中國農業出版社.
台灣農家便覽. 1932. 台灣總督府中央研究所農業部. p.463-469.
台灣農業年報. 1998. 台灣省政府農林廳.
台灣農產品生產成本調查報告. 1998. 台灣省政府農林廳.
朱長志. 1966. 梨. 農家要覽第八輯. 台灣省政府農林廳出版. p.453-470.
李伶燕. 1989. 低溫與化學藥劑處理對打破鳥梨種子休眠與改變蛋白質合成的影響. 中興大學植物學研究所碩士論文.
李信芳. 1980. 梨. 台灣農家要覽. 豐年社出版. P.803-815.
阮素芬、鄭正勇. 1995. 鳥梨砧木生育特性調查與評估初報. 科學農業. 43:260-269.
汪景彥. 1988. 蘋果矮化密植. 中國農業科技出版社.
沈明來. 1993. 生物統計學入門. 九州圖書文物有限公司. p.253-302.
沈德緒. 1994a. 中國大陸梨育種的現狀與展望. 興農303:60-67.
沈德緒. 1994b. 中國大陸梨育種的現狀與展望. 興農304: 62-67.
林國榮. 1993. 統計分析在果樹育種上的應用. 果樹育種研習會專刊. 台灣省農業試驗所特刊第37號. p.95-130.
林嘉興、廖萬正、林信山、張林仁. 1991. 梨栽培之回顧與展望. 台灣果樹之生產及研究發展研討會專刊. p.379-396.
范念慈. 1960. 台灣鳥梨. 中國園藝6:1-6.
倪正柱. 1995. 台灣野梨之復育(一)型態鑑定. 中國園藝40:29-42.
倪正柱. 1995. 台灣野梨之復育(二)分子標誌鑑定. 中國園藝40:269-281.
許方. 1992. 梨樹生物學. 科學出版社.
康有德. 1996. 園藝概論. 國立編譯館. 啟英文化公司. p.455-458.
陳右人, 蔡俊明. 1999. 台灣現有茶樹品種嫩梢與葉片性狀調查. 台灣茶業研究彙報18:1-21.
張龍生. 1993. 果樹產量組成因素之探討. 果樹育種研習會專刊. 台灣省農業試驗所特刊第37號. p.83-94.
楊恭毅. 1984. 楊氏園藝植物大名典. p.5971-5981.
賈敬賢. 1995. 梨樹矮化密植栽培. 中國農業科學院果樹研究所. 金盾出版社出版.
廖萬正. 1995. 梨. 台灣農家要覽. 豐年社.
劉業經. 1972. 梨屬. 台灣木本植物誌. p:182-183.
劉業經、呂福原、歐辰雄. 1994-1995. 台灣樹木誌. 國立中興大學農學院叢書第七號. p.155-156.
應紹舜. 1985. 台灣高等植物彩色圖誌. 第一卷. p.378-381.
魏夢麗、呂秀英. 1999. 決定係數(R2)在迴歸分析中的解釋及正確使用. 科學農業47:341-345.
嚴新富. 1995. 重要園藝作物台灣近緣種之研究. 國立台灣大學園藝研究所博士論文.
Aldalla, O. A., H. Khatamian, and N. W. Miles. 1982. Effect of rootstocks and interstems on composition of “Delicious” apple leaves. J. Amer. Soc. Hort. Sci. 107:730-733.
Barrett. I. C. 1959. Compatibility of certain pear-quince combinations. Fruit Var. Hort. Dig. 14:3-6.
Batjer, L. P., H. A. Schomer, E. J. Newcomer, and D. L. Coyier. 1967. Commercial pear growing. USDA Handbook p.330(abst.).
Baviera, J. A.; J. L. Garcia, and M. Ibarra. 1989. Commercial in vitro micropropagation of pear cv conference. Acta Hort. 256:63-68.
Beakbane, A. B. 1941. Anatomical studies of stems and roots of hardy fruit trees. III. The anatomical structure of some clonal and seedling apple rootstocks stem and root grafted with a scion variety. J. Pom. 18:344-367.
Beakbane, A. B. and P. K. Majumder. 1975. A relationship between stomatal density and growth potential in apple rootstocks. J. Hort. Sci. 50:285-289.
Beakbane, A. B. and E. C Thompson. 1939. Anatomical studies of stems and roots of hardy fruit trees. II. The internal structure of the roots of some vigorous and some dwarfing apple rootstocks and the correlation of structure with vigor. J. Pom. 17:141-149.
Bell, R. L. 1990. Pears (Pyrus). From “ Genetic Resources of Temperate Fruit and Nut Crops 2” p.657-697.
Brase, K. D. and H. B. Tukey. 1937. The relation between the size of apple seedling rootstock and size of orchard tree. Proc. Amer. Soc. Hort. Sci. 34:298-304.
Brossier, J. 1965a. The selection of rootstocks from natural Pyrus calleryana Dcn. from seedling. Scientia Hort. 53:157-165.
Brossier. J. 1965b. The selection of rootstocks from natural populations of quince. I. A study natural populations of quinces. Ann. Amer. Plants. 15:263-326.
Caruso, T., D. Giovannini, and A. Liverani. 1996. Rootstock influences the fruit mineral, sugar and organic acid content of a very early ripening peach cultivar. J. Hort. Sci. 71:931-937.
Challice, J. S. and M. N. Westwood. 1973. Numerical taxonomic studies of the genus Pyrus using both chemical and botanical characters. Bot. J. Linn. Soc. 67:121-148.
Cheng, F. S. and M. L. Roose.1995. Origin and inheritance of dwarfing by the citrus rootstock Poncirus trifoliate “Flying Dragon”. J. Amer. Soc. Hort. Sci. 120:286-291.
Chuang, S. C. 1981. An investigation of the productivity of densely planted Ya-li pear trees grown on the vigorous rootstock Pyrus betulaefolia. Acta Hort. Sci. 8:29-34.
Cobianchi, D. and C. Fideghelli. 1993. Calcium in fruit trees. Giornsle Botsnico Italiano 127:484-489. (abst.)
Cole, C. E. 1966. The fruit industry of Australia and New Zealand. Proc. 17. Int Hort Congr. 3:321-368.
Cummins J. N. and H. S. Aldwinckle. 1983a. Rootstock breeding. In Moore J. N. and J. Janick. edt. “Methods in Fruit Breeding.” Purdue Univ. Press. West Lafayette, Indiana. p.294-327.
Cummins J. N. and H. S. Aldwinckle. 1983b. Breeding apple rootstocks. In Janick. J. edt. “Plant Breeding Reviews” AVI Publishing Company Inc. Westport Connecticut. p.296-395.
Drake, S. R., F. E. Larsen, J. K. Fellman, and S. S. Higgins. 1988. Maturity, storage quality, carbohydrate, and mineral content of “Goldspur” apples as influenced by rootstock. J. Amer. Soc. Hort. Sci. 113:949-952.
Elfving, D. C., I. Schecter, and A. Hutchinson. 1993. The history of the Vindland rootstocks. Fruit Vatieties J. 47:52:58.
FAO. 1999. Production Year Book. FAO.
Fause, M. and S. W. Zagaja. 1984. Prospects for developing low vigor fruit tree cultivars. Acta Hort. 146:21-27.
Fisher, M. 1973. Beitrage zur unterlagenzuchtung. I. Mitt:Eine methode zur fruhzeitigen selektion vegetativ vermehrbarer apfelunterlagen auf schwachwuchsigkeit. Arch. Zuchtungsforsch 3:241-252. (abst.)
Flora of Taiwan. 1979. Epoch Publish Co. Vol. Six:90-92. Taipei. R. O. C.
Flora of Taiwan. 1993. Editorial Committee of the Flora of Taiwan. Second ed. Vol.3:105-107. Taipei. R. O. C.
Glenn, D. M. and R. Scorza. 1992. Reciprocal grafts of standard and dwarf peach alter dry-matter partitioning and root physiology. HortScience 27:241-243.
Hatton, R. G. 1935. Rootstocks for pears. Rpt E. Malling Res. Sta. 1934. p.75-86.
Hansche, P. E. 1986. Heritability of fruit quality traits in peach and nectarine breeding stocks dwarfed by the dw gene. HortScience 21:1193-1195.
Hearn, C. J., D. J. Hutchison, and H. C. Barrett. 1974. Breeding citrus rootstocks. HortScience 9:357-358.
Hedrick, U. P. 1921. The Pear of New York. Rep of the New York Agr. Exp. Sta.
Hussein, I. A. and M. J. Mcfarland. 1994. Rootstock-induced differences in sap flow of “Granny Smith” apple. HortScience 29:1120-1123.
Hutchinson, A. 1967. A simple method of determing the rooting ability of seedling apple clones. Ann. Rpt. Hort. Res. Inst. Ont. 1966 p.23-25.
Ibrahim, I. M. and M. N. Dana. 1971. Gibberellin-like activity in apple rootstocks. HortScience 6:541-542.
Itekani, H. and H. Ohashi. 1993. Taxonomy of native species of Pyrus in Taiwan. J. Jpn. Bot. 68:38-43.
Jaumien, F. and M. Fause. 1984. Stem anatomical structure of Delicious and Golden Delicious apple hybrids with various growth dynamic. Acta Hort. 146:69:79.
Jia, J., F. Pu, and C. Chen. 1989. Evaluation and utilization of compact pear germplasm resources. Zuowo Pinzhong Ziyuan 2:7-8.(abst.)
Lapins, M. 1976. Inheritance of compact growth type in apple. J. Amer. Soc. Hort. Sci. 45:117-124.
Larsen, F. E. and S. S. Higgins. 1989. Asian pear response to drought studied. Good Fruit Grower 40:48-49.
Layne, R. E. C. and H. A. Quamme. 1975. Pears. In Janick, J. and J. N. Moore. edt. “Advances in Fruit Breeding” p.38-70.
Lin, H. S. and J. H. Lin. 1995. Alleviation of supra-optimum temperature stress of high chilling pear in Taiwan’s lowland by adoption of apical dominance. Bulletin of Taichung District Agricultural Improvement Station. 48:55-68.
Lombard, P. B. 1989. Dwarfing rootstocks for European pear. Compact Fruit Tree 22:74(Abst.).
Lombard, P. B. and M. N. Westwood. 1987. Pear Rootstocks. In Ron, R. C. and R. F. Carlson. edt. “Rootastocks for Fruit Crops” John Wiley and Son Inc. p.145-183.
Lombard, P. B., M. N. Westwood, and R. L. Stebbins. 1984. Related genera and Pyrus species for pear rootstock to control size and yield. Acta Hort. 146:197-202.
Looney, N, W. and W. D. Lane. 1984. Spur type growth mutants of “McIntosh” apple: a review of their genetics, physiology and field performance. Acta Hort. 146:31-46.
Martin, G. C. and E. A. Stahly. 1967. Endogenous growth regulating factors in bark of EM IX and XVI apple trees. P. Amer. Soc. Hort. Sci. 91:31-38.
Miller, S. R.; S. H. Nelson, and H. B. Heeney. 1961. Studies on apple rootstock selections relating respiraton rates to an anatomical method of predicting dwarfness. Can. J. Plant Sci. 41:221-226.
Millikan, D. F. and S. A. Pienazek. 1967. Superior quince rootstock for pear from east Europe. Fruit Vari. Hort. Dig. 21:2.
Morini, S. and R. S. Sciutti. 1991. In Vitro Propagation of quince clonal rootstock. Agr. Med. 121:56-57.
Neter, J.; W. Wasserman, and M. H. Kutner. 1989. Apply Linear Regression Models Irwin. Homewood. Boston Ma.
Nii, N. and T. Kuroiwa. 1986. Morphological and anatomical development of peach shoot and leaves as influenced by 6-benzylamino purine. Acta Hort. 179:267-268.
Oldham, M. and K. K. Way. 1965. Drought resistance of D6 pear rootstock. Agric. Guz.43:689-690.
Pathak, R. K., D. Pandey, and V. S. Pandey. 1976. Stomatal distribution an index for predicting the growth potential of apple stocks. J. Hort. Sci. 51:429-431.
Parry, M. S. 1966. Dwarfing quince rootstocks for pears. Rpt. E. Malling Res. Sta. 1965. p.83-87. (Abst,).
Parry, M. S. 1976. Trials of new quince rootstocks for pears J. Hort. Sci. 51:281-287.
Parry, M. S. 1981. Trials of dwarfing quince rootstocks with Comice and Conference pears. J. Hort. Sci. 56:139-143.
Pokatilov, I. F. 1973. Profit ability of pears on dwarfing rootstocks. Vinogradstvo I Vinodelie Moldavii 10:12-13. (Abst.).
Ponette, A. F. and F. Cropley. 1962. Further studies on a selection of Williams“Bon Chretien”pear compatible with quince A rootstocks. J. Hort. Sci. 37:291-294.
Rakngan, J., H. Gemma, and S. Iwahori. 1996. Phenology and carbohydrate metabolism of Japanese pear trees grown under continuously high temperature. J. Jpn. Soc. Hort. Sci. 65:55-65.
Reed, B. M. 1990. Survival of in vitro-grown apical meristems of Pyrus following cryopreservation. HortScience 25:111-113.
Scorza, R. 1986. Dry matter distribution and responses to pruning within a population of standard, semidwarf, compact and dwarf seedlings. J. Amer. Soc. Hort. Sci. 111:541-545.
Scorza, R., T. W. Zimmerman, J. M. Cordts, and K. J. Footen. 1994. Horticultural characteristics of transgenic tobacco expressing the rolC gene from Agrobacterium rhizogenes. J. Amer. Soc. Hort. Sci. 119:1091-1098.
Surigura, T. and H. Honjo. 1997. The effects of temperature on endodormancy completion in Japanese pear (Pyrus pyrifolia Nakai) and modeling the relationship. J. Agri. Meteorology 53:285-290.
Swarbrick, T., D. Blair, and S. Singh. 1946. Studies in the physiology of rootstock and scion relationships. J. Pom. 22:51-61.
Tagliavini, M., D. Bassi, and B. Marangoni. 1993. Growth and mineral nutrition of pear rootstocks in lime soil. Scientia Hort. 54:213-22.
Taper C. D. and R. S. Ling. 1961. Estimation of apple rootstock vigor by the electrical resistance of living shoots. Can. J. Bot. 39:1585-1589.
Taper, C. D., R. S. Ling, and A. Hutchison. 1963. Note on the estimation of apple rootstock vigor by the electrical conductivity of water extract. Can. J. Plant Sci. 43:228-230.
Tukey, H. B. 1964. Dwarfing rootstocks for the pear. In ‘Dwarfing Fruit Trees’ p.182-199.
Tydeman, H. M. 1940. Apple rootstocks immune from woody aphids. III. The influence of four new seedling immunes on Lane’s Prince Albert. Annu. Rpt. E. Malling Res. Sta. 1939. P.46-49. (Abst)
Var Der Zwet. T. 1970. Evaluation of inoculation technique for determination of fire blight resistance in pear seedling. Plant Disease Rept. 54:96-100.
Viti, R. and F. Cinelli. 1989. Evaluation of some clonal quince rootstocks in calcareous soil. Acta Hort. 256:53-61.
Webster, A. D. 1993. New dwarfing rootstocks for apple, pear, plum and sweet cherry - a brief review. Acta Hort. 349:145-153.
Wertheim, S. J. 1989. Preliminary results at trials with dwarfing apple and pear rootstocks. Acta Hort. 243:59-70.
Westwood, M. N. and P. B. Lombard. 1966. Pear rootstocks. Ann. Rpt. Ore. Hort. Soc. 58:61-68.
Westwood M. N. and P. B. Lombard. 1983. Pear rootstocks: present and future. Fruit Variety J. 37:24-28.
White A. G. 1981. BAC 29, a semi-dwarfing quince. Orchardist of New Zealand. 54:156. (Abst.)
Yadava, U. L. and D. F. Dayton. 1972. The relation of endogenous abscisic acids to dwarfing capability of East Malling apple rootstocks. J. Amer. Soc. Hort. Sci. 97:701-705.
Yadava, U. L. and R. G. Luckard. 1977. Abscisic acid and gibberellin in three ungrafted apple(Malus sylvestris) rootstock clones. Physiol. Plant. 40:225-229.
Yang, H. and H. Schmid. 1994. Selection of a mutant for adventitious shoot formed in X-ray treated cherry leaves and differentiation of stand and mutant with RAPDs. Euphytica 77:89-92.
Yoe, D. Y. and B. M. Reed. 1995. Micropropagation of three Pyrus rootstocks. HortSci. 30:620-623.
Zamborlini, M. 1992. Leaf mineral composition of apple tree sampling date and effects of cultivar and rootstock. J. Plant Nutri.15:605-619.
Zhang, W. Q. and X. Z. Tang. 1987. A marker for preselection of apple dwarf type. Acta Botanica Sinica 29:397-400.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top