跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 23:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪瑞雯
研究生(外文):Jui-Wen Hung
論文名稱:連續流循序操作模式應用於薄膜生物反應槽處理ABS樹脂廢水之研究
論文名稱(外文):Application of continuous-flow sequencing operation mode on membrane bioreactor (MBR) for the treatment of ABS resin wastewater
指導教授:張家源張家源引用關係李孫榮李孫榮引用關係
指導教授(外文):Chia-Yuan ChangSuen-Zone Lee
學位類別:碩士
校院名稱:嘉南藥理科技大學
系所名稱:環境工程與科學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:165
中文關鍵詞:氮化物薄膜生物反應槽(MBR)循序批分式反應槽(SBR)ABS樹脂廢水水力停留時間
外文關鍵詞:hydraulic retention timeABS resin wastewaterSequencing batch reactornitrogen compoundsMembrane bioreactor
相關次數:
  • 被引用被引用:18
  • 點閱點閱:587
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:1
本研究建構一實驗室薄膜生物反應槽(Membrane bioreactor,MBR),利用好/缺氧操作模式針對ABS樹脂廢水處理進行研究,研究期間共174天不排泥。反應槽槽體分為兩部分,一為生物處理槽2.3L,另一為薄膜槽3.5L。本研究探討各項水質參數之去除成效,如BOD、COD、TOC、有機氮、氨氮、亞硝酸氮與硝酸氮等,並評估MLSS、MLVSS、食微比以及體積負荷,最後經由流通量與多弁鈺蓬y式電子顯微鏡(Multi-Function Scanning Electron Microscope,簡稱M-SEM)於不同操作條件下探討其薄膜阻塞與流通量。
本研究共分為三階段,其中包含不同水力停留時間(Hydraulic Retention Time,HRT)以及不同操作模式:
Stage 1:HRT為18小時,生物處理槽為持續好氧,薄膜槽進行好氧與缺氧交替,好氧與缺氧之時間比為1.5:1小時,整體上來看,於一個HRT循環下,總好氧時間為13.6小時,總缺氧時間為4.4小時。
Stage 2:HRT為22.4小時,生物處理槽持續好氧,薄膜槽進行好氧與缺氧交替,好氧與缺氧之時間比為2.1:1小時,整體上來看,於一個HRT循環下,總好氧時間為18小時,總缺氧時間為4.4小時。
Stage 3:HRT為22.4小時,生物處理槽進行好氧與缺氧交替,好氧與缺氧之時間比為1:1小時,薄膜槽持續好氧,整體上來看,於一個HRT循環下,總好氧時間為18小時,總缺氧時間為4.4小時。
研究結果得知,HRT對於MLSS濃度有顯著的影響,HRT=18小時下之生物濃度高於HRT=22.4小時。然而,第一階段操作模式下,生物處理槽之MLSS濃度為8000~23300mg/L,第三階段操作模式下,生物處理槽之MLSS濃度降至為3000~5000mg/L,薄膜槽之生物濃度變化趨勢具有與生物處理槽相同的趨勢,但是第三階段操作模式下薄膜槽之生物濃度略高於生物處理槽;在MLVSS/MLSS方面,在三階段操作模式下MLVSS/MLSS介於0.4~0.8,絕大部分為0.5。
BOD之去除效率方面,其去除效率穩定且可高達99.2%,COD與TOC去除效率最高分別為88.8%、83.6%。系統中各槽之BOD體積負荷方面,生物處理槽介於3.03~5.42kg BOD5/m3 day,薄膜槽介於0.02~0.06kg BOD5/m3 day,BOD食微比方面,生物處理槽介於0.9~2.3 kg BOD5/kg MLVSS-day,薄膜槽介於0.01~0.02 kg BOD5/kg MLVSS-day;系統中各槽之COD體積負荷方面,生物處理槽介於6.7~10.8kg COD/m3 day,薄膜槽介於0.28~0.68kg COD/m3 day,COD食微比方面,生物處理槽介於3~4 kg COD/kg MLVSS-day,薄膜槽介於0.1~0.37kg COD/kg MLVSS-day。其值較一般傳統活性污泥程序為高。
在TKN去除方面,Stage 1之去除效率為42±13.9%,Stage 2與Stage 3之去除效果分別為48.9±13.7% 與 54.4±13.7%。然而,TKN之去除效率為40~50%,但出流水亞硝酸與硝酸之濃度非常低,其可表示此系統中脫硝作用與硝酸化作用(nitratation,NO2-→ NO3-)顯著,但其亞硝酸化作用(nitritation,NH4+ → NO2-)受到抑制。
本研究於操作期間薄膜共進行三次化學清洗,分別為第24、56與78天,但在第99天利用化學清洗薄膜已無法恢復通量,因此更換新的薄膜,此薄膜材質與孔徑皆與原薄膜相同,於第99天後不再進行化學清洗,但其清水清洗次數變為頻繁,以約一星期清洗一次改為約兩天清洗一次。本研究並針對新的薄膜與阻塞之薄膜,利用SEM掃描結果,進行其阻塞與過濾特性之描述。
In this study, the performances of a membrane bioreactor for anoxic/aerobic treatment of continuous-flow ABS resin manufacturing wastewater were evaluated by laboratory-scale experiments with no sludge withdrawn for 174 days. This system consists of two reactors, the first reactor is a biological treatment tank (2.3 L) and the second one is a membrane bioreactor (3.5 L). The removal efficiencies of carbon and nitrogen were examined in terms of BOD, COD, TOC, Org-N, NH4+-N, NO2--N and NO3--N. Furthermore, the mixed liquid suspended solids (MLSS), mixed liquid volatile suspended solids (MLVSS), food to microorganism ratios (F/M) and volumetric loadings were measured in this study. Finally, the permeate quantity and fouling of membrane according to different experimental conditions were estimated by flux and SEM images.
Tree stages include different hydraulic retention time (HRT) and operation modes were carried out in this study as follows.
Stage 1: The total HRT of this system was 18 hours. The biological treatment tank was continuous aerobic, the membrane bioreactor was operated at the anoxic/aerobic cycle for 1/1.5 hours. Total aerobic time of this system was 13.6 hours and the anoxic time was 4.4 hours for each HRT.
Stage 2: The total HRT of this system was 22.4 hours. The biological treatment tank was continuous aerobic, the membrane bioreactor was operated at the anoxic/aerobic cycle for 1/2.1 hours. Total aerobic time of this system was 18 hours and the anoxic time was 4.4 hours for each HRT.
Stage 3: The total HRT of this system was 22.4 hours. The biological treatment tank was operated at the anoxic/aerobic cycle for 1/1 hour. The membrane bioreactor was continuous aerobic. Total aerobic time of this system was 18 hours and the anoxic time was 4.4 hours for each HRT.
The results indicated that the HRT seems significantly to affect the concentration of MLSS. The HRT of 18 hours gave the higher biomass concentration than HRT of 22.4 hours. However, the MLSS concentration of the first stage in biological treatment tank was in a range of 8000 to 23300 mg/L. Consequently, decreased and maintained at a range from 3000 to 5000 mg/L for stage 3. A similar MLSS concentration variation was observed in membrane tank. However, the MLSS concentrations of membrane tank were higher than that of biological treatment tank expect for stage 3. The MLVSS/MLSS ratios were also calculated for both the biological and membrane tanks. In generally, the MLVSS/MLSS ratios are in a range of 0.4 to 0.8, but most of the values were below 0.5.
Generally, the effluent concentrations of BOD were remarkably stable and with a highest removal efficiency of 99.2%. COD and TOC removal was 88.8% and 83.6%, respectively. The BOD volumetric loadings of biological treatment tank were in the range of 3.03~5.42kg BOD5/m3 day and in the range of 0.02~0.06kg BOD5/m3 day for membrane tank. The BOD F/M of biological treatment tank was in the range of 0.9~2.3 kg BOD5/kg MLVSS-day and in the range of 0.01~0.02 kg BOD5/kg MLVSS-day for membrane tank. The COD volumetric loadings of biological treatment tank were in the range of 6.7~10.8kg COD/m3 day and in the range of 0.28~0.68kg COD/m3 day for membrane tank. The COD F/M of biological treatment tank was in the range of 3~4kg COD/m3 day and in the range of 0.1~0.37 kg COD/kg MLVSS-day for membrane tank. Compared to the data obtained from conventional aerobic processes, those data obtained from this study were very high.
The removal efficiency of TKN for stage 1 was 42±13.9%, for stage 2 and stage 3 was 48.9±13.7% and 54.4±13.7%, respectively. However, the results showed that low nitrite and nitrate concentrations in the effluent and only 40% to 50% TKN removed. It implied that denitrification can be accomplished and nitrification of the nitritation (NH4+ → NO2-) is inhibited but the nitratation (NO2-→ NO3-) is significant.
In the first 78 days, tree times of chemical cleanings were carried out. It was 24, 56 and 78 day, respectively. On days 99, the flux can be not recovered even the chemical cleaning. A new hollow fiber membrane module with the same material and pore size replace the fouled one and no more chemical cleaning after days 99. However, the water cleaning was more frequent from once a week to once two days after the membrane changed. Images of the new, fouled and cleaned membrane using SEM provide a means for qualitative description of fouling in this study.
目錄
中文摘要 -I-
英文摘要 -IV-
致謝 -VII-
目錄 -VIII-
圖目錄 -XI-
表目錄-XIX-
第一章 緒論 -1-
1-1 研究緣起 -1-
1-2 研究目的 -3-
第二章 文獻回顧 -4-
2-1 氮循環 -4-
2-1-1 硝化作用 -7-
2-1-2 影響硝化作用之因子 -8-
2-1-3 脫硝作用 -11-
2-1-4 影響脫硝作用之因子 -11-
2-2 薄膜生物程序 -13-
2-2-1 薄膜種類 -13-
2-2-2 薄膜生物程序 -16-
2-2-3 MBR相關處理成效 -22-
2-3 循序批分式程序 -24-
2-3-1 循序批分式程序相關處理成效 -26-
2-4 MBR與SBR結合之相關處理成效 -28-
第三章 實驗設備及研究方法 -30-
3-1 反應槽設計 -30-
3-2 研究方法與流程 -35-
3-3 實驗設備與藥品 -37-
3-3-1 水質分析用藥 -37-
3-3-2 SEM樣品前製處理 -40-
3-3-3 分析儀器 -41-
3-4 廢水性質 -43-
3-5 薄膜操作與組裝 -44-
3-5-1 薄膜組裝 -44-
3-5-2 薄膜操作與清洗 -46-
第四章 結果與討論 -47-
4-1 好氧與缺氧操作時段測試 -47-
4-2 HRT=18小時(薄膜槽好氧與缺氧時段比為1.5:1小時) -51-
4-3 HRT=22.4小時(薄膜槽好氧與缺氧時段比為2.1:1 小時) -67-
4-4 HRT=22.4小時(生物處理槽好氧與缺氧時段比為1:1 小時) -83-
4-5 綜合性討論 -98-
第五章 結論與建議 -133-
5-1 結論 -133-
5-2 建議 -135-
參考文獻 -136-
簡歷 -142-
1.蔡岳宗,兩段式生物脫硝及硝化組合程序去除ABS製程廢水中有機物與含氮化合物之研究,國立成奶j學環境工程學系碩士論文,(1999)
2.林泓胤,三段式流體化床生物程序處理高氮工業廢水之程序研究,國立成奶j學環境工程學系碩士論文,(2000)
3.Benefield, Larry. D., Randdall, C. W., “Biological process design for wastewater treatment”, Vol. 38, pp. 197-200, (1977)
4.Barnard, D. and P. J. Bliss, “Biological control of nitrogen in wastewater treatment ”, E. & F. N. Spon, London, (1983)
5.吳先琪,王美雪,施養信,劉泰銘,“ 廢水微生物學”,國立編譯館(2000)
6.Focht, D. D. and W. Verstraete, “Biochemical ecology of nitrification and denitrification”, Adv. Microb. Ecol. Vol. 1, pp. 135-214. (1977)
7.Stenstorm, M. K., “The effect of dissolved oxygen concentration”, Water Research, Vol. 14, pp. 643-649, (1980)
8.Painter, H. A. and J. E. Loveless, “Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in the activated sludge process”, Wat. Res., Vol. 17, pp. 237-248, (1983)
9.U. S. EPA, “Process Design Manual for Nitrogen Control”, Office Technology Transfer, Washington, DC, (1975)
10.Water Environment Federation, Biological and Chemical Systems for Nutrient Removal. ISBN: 1-57278-123-8 (1998).
11.Knowles, G., Downing, A. L. and Barrett, M. T., “Determination of kinetic constants for nitrifying bacteria in mixed culture with the aid of an electronic computer”, J. Gen, Microbiol, Vol. 38, PP. 263-278, (1965)
12.Randall, C. W. and Cokgor, E. U. “Modification and expansion of a pure oxygen WWTP for biological nutrient removal (BNR)”, Wat. Sci. Tech., Vol. 44, NO. 1, pp. 167~172, (2001)
13.Metcalf & Eddy, Inc., Wastewater Engineering: Treatment, Disposal, Reuse, 3rd Ed., McGraw-Hill, Inc., New York, (1991)
14.Bitton, G., B. J. Dutka and C. W. Hendricks, “Microbial toxicity tests”, Ecological Assessment of Hazardous Waste Sites, W. Warren-Hicks, B. R. Parkhurst and S. S. Baker, Jr., Eds. EPA 600/3-89/013. U. S. EPA, Corvallis, OR, (1989)
15.Tiedje, J. M., “Ecology of denitrification and dissimilatory nitrate reduction to ammonium”, Biology of Anaerobic Microorganisms, A. J. B. Zehnder, Ed. Wiley, New York, (1988)
16.Christensen, M. H. and P. Harremoes, “Nitrification and denitrification in wastewater treatment”, Water Pollution Microbiology, Vol. 2, R. Mitchell, Ed. Wiley, New York, pp. 391-414, (1978)
17.Christensen, M. H. and P. Harremoes, “ Biological denitrification of sewage: A literature review”, Water Technol., Vol. 8, PP. 509-555, (1977)
18.Choi, E., Rhu, D., Yun, Z. and Lee, E. “Temperature effects on biological nutrient removal system with weak municipal wastewater”, Water Sci. Tech., Vol. 37, NO. 9, pp. 219-226, (1998)
19.http://www.kochmembrane.com/
20.Brindle, K. and Stephenson, T., “The applications of membrane biological reactors for the treatment of wastewaters”, Biotechnol. Bioeng. Vol. 49, pp. 601-610, (1996)
21.Pankhania, M., Brundle, K. and Stephenson, T. “Membrane aeration bioreactors for wastewater treatment: completely mixed and plug-flow operation”, Chemical Engineering Journal, Vol. 73, NO. 2, pp. 131-136, (1999)
22.Livingston, A. G., Arcangeli, J. P., Boam, A. T., Zhang, S., Marangon, M. and Freitas, L. M., “ Extractive membrane bioreactor for detoxification of chemical industry wastes: process development”, Journal of Membrane Science, Vol. 151, No. 1, pp. 29-44, (1998)
23.Ueda, T. Hata, K. and Kikuoka Y. “Wastewater treatment using Membrane Bioreactor”, Wat. Sci. Tech., Vol. 34. pp. 259, (1996)
24.Yamamoto K., “Membrane filtration. In Rapid Filtration, Biological Filtration and Membrane Filtration”, Gihodo Shuppan, Tokyo, 255, (1994)
25.Fan Xiao Jun, Urbain Vincent, Qian Yi and Manem Jacques, “Nitrification and mass balance with a membrane bioreactor for municipal wastewater treatment”, Wat. Sci. Tech., Vol. 34, pp. 129-136, (1996)
26.Ueda, T., Hata, K. and Kikuoka, Y., “Treatment of domestic sewage from rural settlement by a membrane bioreactor”, Wat. Sci. Tech., Vol. 34, No. 9, pp. 189-196, (1996)
27.D. G. V. de Silva, V. Urbain, D. H. Abeysinghe and B. E. Rittmann, “Advanced analysis of membrane-bioreactor performance with aerobic- anoxic cycling”, Wat. Sci. Tech. Vol. 38, No. 4-5, pp. 505-512, (1998)
28.N. Cicek, J. Davel, M. T. Suidan, J. Audic and P. Genestet, “Effect of solids retention time on the performance and biological characteristics of a membrane bioreactor”, Wat. Sci. Tech., Vo. 43, No. 11, pp. 43-50, (2001)
29.Krauth, K. H. and Staab K. F., “Pressurized bioreactor with membrane filtration for wastewater treatment”, Wat. Res., Vol. 27, PP. 405-411, (1993)
30.Xia Huang, Ping Gui and Yi Qian, “Effect of sludge retention time on microbial behaviour in a submerged membrane bioreactor”, Process Biochemistry, Vol. 36, pp. 1001-1006, (2001)
31.Jin Kie Shim, Ik-Keun Yoo and Young Moo Lee, “Design and operation consideration for wastewater treatment using a flat submerged membrane bioreactor”, Process Biochemistry, Vol. 38, pp. 279-285, (2002)
32.EI Hani Bouhabila, Roger Ben Aïm and Hervé Buisson, “Fouling characterization in membrane bioreactors”, Separation and purification Technology, Vol. 22-23, pp. 123-132, (2001)
33.Stefan Holler and Walter Trösch, “Treatment of urban wastewater in a membrane bioreactor at high organic loading rates” Journal of Biotechnology, Vo. 92, pp. 95-101, (2001)
34.Harty D. M., Hurta G. P., Werthman P. H. and Konsella J. A., “Sequencing batch reactor treatment of high strength leachate: a pilot scale study”, In 66th Annual Conference and Exposition Anaheim, California, October 3-6, Water Environment Federation, pp. 21-31, (1993)
35.K. J. Kennedy and E. M. Lentz, “Treatment of landfill leachate using sequencing batch and continuous flow upflow anaerobic sludge blanket (UASB) reactors”, Wat. Res., Vol. 34, N0. 14, pp. 3640-3656, (2000)
36.Fikret Kargi and Ahmet Uygur, “Effect of carbon source on biological nutrient removal in a sequencing batch reactor”, Bioresource Technology Vol. 89, pp. 89-93, (2003)
37.S. H. Lin and K. W. Cheng, “A new sequencing batch reactor for treatment of municipal sewage wastewater for agricultural reuse”, Desalination, Vol. 133, pp.41-54, (2001)
38.C. Di Iaconi, A. Lopez, R. Ramador, A. C. Di Pinto, R. Passino, “Combined chemical and biological degradation of tannery wastewater by a periodic submerged filter (SBBR)”, Wat. Res. Vol. 26, pp. 2205-2214, (2002)
39.Ruey-Fang Yu, Shu-Liang Liaw, Cheng-Nan Chang and Wan-Yuan Cheng, “Applying real-time control to enhance the performance of nitrogen removal in the continuous-flow SBR system”, Wat. Sci. Tech., Vol. 38, No. 3, pp. 271-280, (1998)
40.Ahmet Uygur and Fiker Kargi, “Biological nutrient removal from pre-treated landfill leachate in a sequencing batch reactor ”, Journal of Environmental Management, Vol. 71, pp. 9-14, (2004)
41.Tae-Hyun Bae, Sung-Soo Han, Tae-Moon Tak, “Membrane sequencing batch reactor system for the treatment of dairy industry wastewater”, Process Biochemistry, Vo. 39, pp. 221-231, (2003)
42.In-Joong Kang, Chung-Hak Lee and Kyu-Jin Kim, “Characteristics of microfiltration membranes in a membrane coupled sequencing batch reactor system”, Water Research, Vol. 37, PP. 1192-1197, (2003)
43.Sung-Soo Han, Tae-Hyun Bae, Gyung-Gug Jang and Tae-Moon Tak, “Influence of sludge retention time on membrane fouling and bioactivities in membrane bioreactor system”, Process Biochemistry, Vol.40, pp. 2393-2400, (2005)
44.Membrane Products Dept. b. Polyethylene Microporous Hollow fiber Membrane. Mitsubishi Rayon Co, LTD.
45.林曜文,“沉浸式薄膜生物程序處理ABS樹脂廢水之研究”,嘉南藥理科技大學環境工程與科學系碩士論文,(2004)
46.Jung-Goo Choi, Tae-Hyun Bae, Jung-Hak Kim, Tae-Moon Tak, A. A. Randall, “The behavior of membrane fouling initiation on the crossflow membrane bioreactor system”, Journal of Membrane Science, Vol. 203, pp. 103-113, (2002)
47.M. Fuerhacker, H. Bauer, R. Ellinger, U. Sree, H. Schmid, F. Zibuschka and H. Puxbaum, “Approach for a novel control strategy for simultaneous nitrification/denitrification in activated sludge reactors”, Pergamon, Vol. 34, NO. 9, pp. 2499-2506, (2000)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top