跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.126) 您好!臺灣時間:2025/11/28 10:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張紘睿
研究生(外文):Hung-Jui Chang
論文名稱:填充材料及磨粒對樹脂CBN砂條磨削硬鋼特性之研究
論文名稱(外文):The Effect of the Abrasive and Filler on Resin Bonded CBN Specimens for Grinding Steel
指導教授:蔡明義蔡明義引用關係曾彦魁
指導教授(外文):Ming-Yi TsaiYen-Kuei Tseng
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:89
中文關鍵詞:CBN磨料磨削碳黑
外文關鍵詞:CBN AbrasiveGrindCarbon black
相關次數:
  • 被引用被引用:2
  • 點閱點閱:408
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
樹脂砂輪的構造主要由磨料、結合劑、組織所組成,由於砂輪與砂條之結構相同,因此本實驗使用砂輪之製程來製作樹脂CBN砂條,利用砂條幾何形狀不同之緣故來節省製作時間、實驗經費以及能夠觀察砂條表面微結構。以往在觀察砂輪表面組織往往經由破片來觀察研磨後砂輪表面情形,此方式卻無法仔細觀察到磨料與結合劑在經過研磨後產生之微結構變化,因此本文改良一可承載砂條之載台,而載台之體積大小能夠置入電子顯微鏡(SEM)腔體內進行微結構觀察,接著設計一可與載台做嵌合動作且能夠固鎖於磨床心軸上進行研磨作業之治具,此治具及載台能夠幫助本研究觀察砂條研磨前後之微結構變化。本實驗之研磨材料為硬度HRC 60 ~ 61之DC53鋼材,設定之砂條配方為添加不同重量百分比之碳黑(0、1、5)wt% 和銅(0、1、5)wt%以及兩種不同型號之磨粒,分別為一般CBN磨粒BBN-4及有鍍鎳CBN磨粒BBN-4-60NS。經過研磨實驗後發現碳黑添加量為1wt%時能對砂條磨耗量造成較佳之影響,而碳黑添加量5wt%時工件表面粗糙度最佳。而銅對砂條具有潤滑之效果,所以在有添加銅之砂條上同樣發現了砂條磨耗量降低之趨勢。
Grinding wheel comprises abrasive、bond and structure. In this study, it was used in the producing process of resin-bonded CBN specimen because they have the same ingredients. Their different geometric shapes, however, make it possible to reduce the experimental cost and the producing time and to observe the surface of microstructure of CBN specimens. In the past, grind wheel’s microstructure was observed by the fragment after grinding. Which failed to provide a comprehensive observation about the variation on bond and abrasive. To solve the above-mentioned problem, a carrier is modified to place in scanning electric microscope (SEM) for observation. Then, a holder which could be locked to the grinder spindle and allow the carriers to attach to it for grinding process is designed. Such equipment helps to observe the microstructure of CBN specimens after and before grinding. In this study, the workpiece is DC53 steel which undergoes thermal treatment to HRC 60~61. And the resin-bonded CBN specimens containing different amount of carbon black (0, 1, 5) wt% and Cu (0, 5) wt% are used, along with two species of abrasive, the CBN abrasive BBN-4 and the BBN-4-60NS which is coating Nickel on BBN-4. It is found out that the CBN specimen has lower abrasion when it contains 1wt% carbon black filler, and the CBN specimen contains 5wt% carbon black filler makes the best surface roughness of DC53. And due to the lubricating of Cu, the CBN specimen’s abrasion is decreased by Cu.
誌謝 I
摘 要 III
ABSTRACT IV
目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究目的及方法 11
1.3 論文架構 12
第二章 磨削理論 14
2.1 研磨作用 14
2.2 砂輪磨損情形 15
2.3 磨削力與磨削功率 16
2.4 砂輪與工件接觸弧長 17
2.5 磨削溫度 18
2.6 未變形切屑厚度 19
2.7 磨削比 20
2.8 比磨削能 21
2.9 磨粒拉伸強度 21
2.10 工件表面粗糙度 21
第三章 實驗規劃與設備 23
3.1 實驗設備 23
3.2 實驗材料及耗材 30
3.3 實驗方法與步驟 34
第四章 樹脂CBN砂條載台及治具 38
4.1 載台設計及砂條黏結於載台上流程 38
4.2 治具及載台配合方式 40
4.3 樹脂CBN砂條載台及治具特色 42
第五章 結果分析與討論 45
5.1 砂條抗折強度分析 45
5.1.1 磨粒對砂條抗折強度之影響 47
5.1.2 銅填充材料對砂條抗折強度之影響 49
5.1.3 碳黑填充材料對砂條抗折強度之影響 50
5.2 磨削實驗結果與討論 52
5.2.1 磨粒對砂條磨耗量之影響 52
5.2.2 填充材料對砂條磨耗量之影響 54
5.2.3 磨粒對材料移除量之影響 55
5.2.4 填充材料對材料移除量之影響 57
5.2.5 工件表面粗糙度及形貌 58
5.2.6 不同進給量及磨削比之結果 62
5.3 砂條表面型態觀察 71
第六章 結論 81
第七章 未來展望 83
參考文獻 84

1. J. Kopac, P. Krajnik, High-performance grinding—A review, Journal of Materials Processing Technology (2006), pp.278-284.
2. M. J. Jackson, C. J. Davis, M. P. Hitchiner, High-speed grinding with CBN grinding wheels—applications and future technology, Journal of Materials Processing Technology (2001), pp.78–88.
3. D. Herman, J. Krzos, Influence of vitrified bond structure on radial wear of CBN grinding wheels, Journal of Materials Processing Technology (2009), pp.5377-5386.
4. R. P. Upadhyaya, J.H. Fiecoat, Factors Affecting Grinding Performonce with Electroplated CBN Wheels, Annals of the CIRP (2007), Vol. 56/1, pp. 339-342.
5. K. Wegener (3), H. W. Hoffmeister , B. Karpuschewski (1), F. Kuster (3), W. C. Hahmann , M. Rabiey, Conditioning and monitoring of grinding wheels, CIRP Annals Manufacturing Technology (2011), pp.757-777.
6. 陳建林,精密研削用樹脂CBN砂輪的研究及磨削試驗,湖南大學碩士論文,2006年。
7. S. Malkin, Grinding technology: Theory and applications of machining with abrasives, Tohn Wiley and Sons, 1989.
8. A. A. Griffith , The Phenomena of Rupture and Flow in Solids, philosophical Transactions of the Royal Society of Landon. Series A (1921), pp.163-198.
9. I. Yoshio, Mechanical properties and grinding performance of ultrafine-crystalline CBN abrasive grains, Diamond & Related Materials (2008), pp.1791-1795.
10. X. Chen, W. B. Rowe, Analysis of the transitional temperature for tensile residual stress in grinding, Journal of Materials Processing Technology (2000), pp.216-221.
11. Y. H. Ren, B. Zhang, Z. X. Zhou Specific energy in grinding of tungsten carbides of various grain sizes, CIRP Annals Manufacturing Technology (2009), pp.299-302.
12. W. F. Ding, J. H. Xu, M. Shen, H. H. Su, Y. C. Fu, B. Xiao, Joining of CBN abrasive grains to medium carbon steel with Ag Cu/Ti powder mixture as active brazing alloy, Materials Science and Engineering (2006), pp.301-306.
13. H. W. Park, S. Y. Liang, Force modeling of micro-grinding incorporating crystallographic effects, International Journal of Machine Tools & Manufacture (2008), pp.1658-1667.
14. M. J. Jackson, B. Mills, Materials selection applied to vitrified alumina and CBN grinding wheels, Journal of Materials Processing (2000), pp.114-124.
15. D. Herman, J. Krzos, Influence of vitrified bond structure on radial wear of CBN grinding wheels, Journal of Materials Processing (2009), pp.5377-5386.
16. X. Lv, Z. Lin, and Y. Zhu, J. Zhao, G. Zhao, Effect of PMMA pore former on microstructure and mechanical properties of vitrified bond CBN grinding wheels, Ceramics International (2013), pp.1893-1899.
17. J. L. Chen, L. b. Wan, Manufacture and grinding performance of a polyimide resin-bonded CBN wheel for precision grinding of ferrous materials, Advanced Materials Research (2012), pp.443-448.
18. X. J. Cao, K. P. Zhang, M. Zhang, The orderly and direction study of grinding wheel grits based on geomorphologic feature, International Conference on Manufacturing Engineering and Automation (2012), pp.369-372.
19. J. F. G. Oliveira, A novel dressing technique for texturing of ground surfaces, CIRP Annals - Manufacturing Technology (2010),pp.361-364.
20. X. Y. Wang, R. K. Wu, J. Wang, Absorbed Energy in Laser Truing of a Small Vitrified CBN Grinding Wheel, Journal of Materials Processing Technology (2005), pp.1128-1133.
21. B. Ramesh, nvestigations on Laser Dressing of Grinding Wheels Grinding Performance of a Laser Dressed Aluminum Oxide Wheel. Transactions of the ASME Journal of Engineering for Industry (1989), pp.253-261.
22. Y. Kunieda, H. Matsuura, S. Kodama, N. Yoshihara, J. Yan, T. Kuriyagawa, Development of a New Laser Conditioning Method for Ultra-Fine Grit Diamond Wheels, Key Engineering Materials (2007), pp. 175-180.
23. T. Tawakoli, U. Heisel, and D. H. Lee, A. Daneshi, An Experimental Investigation on the Characteristics of Cylindrical Plunge Dry Grinding with Structured CBN wheels, CIRP Conference on High Performance Cutting ( 2012 ), pp.399-403.
24. E. Pecherer, S. Malkin, Grinding of steels with Cubic Boron Nitrid (CBN), Annals of the CIRP Vol.33/1, 1984, pp.211-216.
25. B. Denkena, D. Boehnke, and B Wang Manufacturing of Functional Microstructured Surfaces by Grinding with Vitrified SiC and CBN-wheels, International Journal of Abrasive Technology (2009), pp.207-222.
26. A. Azizi, A. Rahimi, and S. M. Rezaei, H. Baseri Modeling of Dressing Forces of Vitrified CBN Grinding Wheels with Rotary Diamond Cup Dresser, Proceedings of the Institution of Mechanical Engineers Journal of Machining Science and Technology (2009), pp.407-426.
27. M. Nanduri, D. G. Taggart, and T. J. Kim ,Abrasive Water Jet Truing of Diamond Grinding wheels, 9th American Waterjet Conference, Michigan, USA (1997), pp.61-76.
28. T. Tawakoli, M. Rabiey, An Innovative Concept and its Effects on Wheel Surface Topography in Dry Grinding by Resin and Vitrified Bond CBN Wheel. Machining Science and Technology (2008), pp.514-528.
29. K. Suzuki, T. Uematsu, and T. Nakagawa On-machine Trueing/Dressing of Metal Bond Grinding Wheels by Electro-discharge Machining, Annals of the CIRP (1987), pp.115-118.
30. B. K. Rhoney, A. J. Shih, and R. O. Scattergood, J. L. Akemon, C. J. Gust, M. B. Grant, Wire Electrical Discharge Machining of Metal Bond Diamond Wheels for Ceramic Grinding, International Journal of Machine Tools & Manufacture (2002), pp.644-653.
31. F. Jiao, B. Zhao, and X. S. Zhu, Q. T. Fan, Ultrasonic Dressing of Grinding Wheel and its Influence on Grinding Quality. Key Engineering Materials (2006), pp.62-65.
32. H. S. Lim, K. Fathima, A. S. Kumar, M. Rahman, A Fundamental Study on the Mechanism of Electrolytic In-process Dressing (ELID) Grinding, International Journal of Machine Tools & Manufacture (2002), pp.935-943.
33. C. Zhang, Y. C Shin, Wear of Diamond Dresser in Laser-assisted Truing and Dressing of Vitrified CBN Wheels. International Journal of Machine Tools & Manufacture (2003), pp.41-49.
34. 林子毓,以磨削力探討CBN 球狀磨刀之磨削行為,國立高雄第一科技大學機械與自動化工程學系,碩士論文,民國 93年7月。
35. 羅瑞興,微小鑽石砂輪之研製淡江大學機械與機電工程學系碩士班,碩士論文,民國 94年6月。
36. 徐世穹,瓷質CBN 砂輪磨削工具剛性能之分析,華梵大學機電工程研究所,碩士論文,民國91 年6 月。
37. 吳詒謀,電鍍CBN 杯型砂輪磨削硬鋼之研究,華梵大學機電工程研究所,碩士論文,民國98 年12 月。
38. 郭育源,以支持向量機法對CBN磨削進行製程狀態分級之研究,國立高雄第一科技大學,碩士論文,民國94 年12 月。
39. 盧志勇,Inconel 718 的切屑型態與磨削特性之研究,國立清華大學動力機械學系,碩士論文,民國82 年12 月。
40. S. Shaji, V. Radhakrishnan, Investigations on the application of solid lubricants in grinding, Proc. Inst. Mech. Eng. P. B. J. Eng. Manuf (2002), pp.1325-1343.
41. D. Mukhopadhyay, S. Banerjee, N. S. Reddy, Investigation to study the application of solid lubricant in turning AISI 1040 steel, Trans. ASME (2007), pp.520-526.
42. N. S. K. Reddy, P. V. Rao, Experimental investigation to study the effect of solid lubricants on cutting forces and surface in end milling, International Journal of Machine Tools & Manufacture (2006) pp.189-198.
43. D. N. Rao, P. V. Krishna, The influence of solid lubricant particle size on machining parameters in turning, International Journal of Machine Tool & Manufacture (2008), pp.107-111.
44. A. R. Machado, J. Wallbank, The effect of extremely low lubricant volumes in machining, Wear 210 (1997), pp.76-82.
45. K. Hayashi, I. Inasaki, T. Wakabayashi, S. Suda, S. Suzuki, H. Yokota, T. Aoyama and M. Nakamura , A Controlled Atmosphere Cutting Apparatus for Understanding Tribological Behavior of Lubricants in Near-Dry Machining, Key Engineering Materials (2004), pp.257-258.
46. L. R. da Silva, E. C. Bianchi, R. Y. Fusse, R. E. Catai, T. V. Franca, P. R. Aguiar, Analysis of surface integrity for minimum quantity lubricant MQL in grinding, International Journal of Machine Tools and Manufacture (2007), pp.412-418.
47. 何靖國,鑽石磨棒磨削多晶鑽石加工之研究,華梵大學機電工程研究所,碩士論文,民國94 年 7月。
48. 陳立輝,滑動磨耗概述,材料科學第18B卷 第一期,技術資料,民國75年,pp. 1~12。
49. 鄭博仁,添加碳黑對碳/碳複合材料機械及磨耗性質之影響,國立成功大學材料科學及工程學系,碩士論文,民國89年,pp. 24~25。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top