跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.82) 您好!臺灣時間:2026/02/20 08:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張晏青
研究生(外文):Yen-Ching Chang
論文名稱:皮膚暴露危害評估模式中皮膚滲透性及系統吸收閾值劑量之預測
論文名稱(外文):The Estimation of Skin Permeability and Threshold Dose of Systemic Uptake in Skin Exposure Hazard Modeling
指導教授:陳振菶陳振菶引用關係
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:職業安全與衛生學系碩士班
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:327
中文關鍵詞:皮膚暴露危害數學預測模式皮膚滲透係數量化結構-活性關係立即危害生命健康濃度呼吸半致死濃度
外文關鍵詞:Skin exposure hazardpredictive modelskin permeabilityquantitative structure-activity relationshipImmediately Dangerous to Life or Health concentrationinhalational lethal concentration 50%
相關次數:
  • 被引用被引用:0
  • 點閱點閱:918
  • 評分評分:
  • 下載下載:64
  • 收藏至我的研究室書目清單書目收藏:0
隨著作業環境化學品使用與日俱增,勞工或緊急應變人員面臨化學性危害因子暴露之問題益形嚴重,亦使面臨意外發生時所需緊急應變之處理需求愈趨嚴峻,因此化學毒物之暴露危害評估成為工業衛生以及法規毒理學之重要課題。針對工業化學毒物之皮膚暴露風險評估,預測性數學模式之發展已逐漸成為傳統生物毒害效應測試結果缺乏時之替代性評估工具,並獲接受於作業環境皮膚暴露危害管制以及緊急應變暴露標準制定時應用。
本研究針對工業化學毒物危害風險評估之資訊需求建構不同類別之預測性數學模式,包含適用於皮膚滲透係數(Kp)推論之量化結構−活性關係(QSAR)、以美國國家職業安全衛生研究所(NIOSH)運用於皮膚註記制定之危害預測模式(NIOSH模式)為基礎所擴充之高濃度、短期皮膚暴露危害預測模式、以及適用於立即危害生命健康濃度(IDLH)暴露標準預測之QSAR。其中NIOSH模式之功能擴充乃透過利用IDLH以及急性毒害效應閾值呼吸半致死濃度及最低呼吸致死濃度作為參考空氣濃度達成。
本研究重要發現如下:針對預測Kp所建立之QSAR與早期Kp QSAR相較能較精確描述與化學物皮膚滲透性相關之分子特徵,同時透過分子描述符之演繹可重行界定化學物分子量影響皮膚滲透行為之次領域。NIOSH模式經擴充後已具備分別以緊急暴露管制標準以及急性毒害效應為人體累積劑量計算基礎、適用緊急應變作業評估之子模式;評估高濃度、短期暴露之子模式間替換性高。本研究同時針對各模式界定皮膚暴露危害辨識閾值。針對防範急性毒害效應以及防範嚴重呼吸道/皮膚刺激發炎之二IDLH QSARs中,以刺激發炎為防範標的之模式預測效能高,可作為針對重度刺激IDLH或類似緊急應變標準制定時之參考。本研究所發展之數學模式及適用條件分析,當可提供作為預測性數學模式在職業暴露限制標準發展所需之參考健康風險評估工具。

With an increasing and diversified use of chemical in the workplace, the exposure of workers or emergency responders to chemical hazard has become a critical issue in industrial health and regulatory toxicology. Correspondingly, attention has been focused on developing instruments of health hazard assessment for regulatory application. For industrial chemical of potential skin exposure hazard, predictive modeling has been applied as an alterative to conventional biological testing in meeting the demand of data needs and in the development of regulatory standards for prevention of occupational skin exposure and for operation in emergency response.
This study developed various types of state-of-the-art predictive algorhtms for estimating health risks associated with exposure to industrial toxic chemicals. These algorithms included: a molecular descriptor-based quantitative structure-activity relationship (QSAR) that described the skin permeability of chemical (Kp); skin exposure hazard-predicting models for evaluating hazard potential of chemical under scenarios of short-term, high-concentration exposure based on an algorithm adopted by the US National Institute for Occupational Safety and Health (NIOSH) for assignment of NIOSH skin notations (the NIOSH model); and two QSARs fitted to characterize the moelecular properties that might be essential in the development of Immediately Dangerous to Life and Health concentrations (IDLHs). In the expanded NIOSH model, the IDLH and two acute toxicity thresholds, inhalational lethal concentration 50% and lowest observed lethal concentration, were used as reference airborne concentration in the estimation of acceptable uptake of target chemical through systemic circulation.
The followings were a summary of key findings: The Kp QSAR developed and validated in this study compared to those constructed in the last decades was capable of describing molecular characteristics significantly involved in the epidermal transport behaviors of compounds and interpreting a sub-domain that quantitatively defined the molecular weight as a property of influence to skin permeability of chemical. The revised NIOSH models were able to estimate the acceptable uptake and accumulation of chemical in the body upon contingency exposure using either an emergency response standard or lethal concentration data, thus qualified for use as a preliminary tool of hazard evaluation in emergency response operation. These models were compatible in their power of predictability, and thresholds of hazard identification were defined in each model. Between the two QSARs developed to predict the acute toxicity-based and severe respiratory/dermal irriation-based IDLH, the model describing the acute irritation-based IDLH was of a superior predictability and sufficient reliability to serve as a referece if development of acute irritation-based IDLHs or comparable standards was attempted. Overall, the predictive models that this study developed and the conclusions/recommendations made herein for their application could serve as a supplementary instrument in the health risk assessment applied in the development of occupational exposure limits.

誌謝 i
中文摘要 iii
Abstract v
目錄 vii
表目錄 xi
圖目錄 xiv
第一章 緒論 1
第一節 研究背景與研究動機 1
第二節 研究之重要性 7
第三節 研究目的 8
第四節 研究假設 9
第五節 名詞界定 9
第二章 文獻探討 12
第一節 數學預測模式作為制定皮膚註記之科學準則 12
第二節 美國國家職業安全衛生研究所皮膚註記制定使用之預測模式 15
第三節 皮膚滲透性之量化結構—活性關係式 18
第四節 美國國家職業安全衛生研究所皮膚暴露危害預測模式中呼吸劑量推論之參考空氣濃度選定與立即危害生命健康濃度 21
第五節 研究架構 23
第三章 研究方法 25
第一節 皮膚滲透係數量化結構-活性關係模式之發展與驗證 25
3.1.1 皮膚滲透係數量化結構-活性關係模式發展與驗證所需標的化學物之選定 25
3.1.2 皮膚滲透係數量化結構-活性關係模式之發展與驗證 26
第二節 美國國家職業安全衛生研究所皮膚暴露危害預測模式中急性暴露適用呼吸劑量之發展與驗證 31
3.2.1 呼吸劑量子模式發展與驗證所需標的化學物之選定 31
3.2.2 皮膚暴露危害預測模式運算與建立量化結構−活性關係模式所需參數資料之收集 35
3.2.3 皮膚暴露危害預測模式參考空氣濃度中呼吸半致死濃度與最低呼吸致死濃度數據30分鐘當量濃度之計算 36
3.2.4 模式預測效能比較及分析 36
第三節 立即危害生命健康濃度量化結構−活性關係模式之發展與驗證 37
3.3.1 立即危害生命健康濃度量化結構−活性關係模式發展與驗證所需標的化學物之選定 37
3.3.2 立即危害生命健康濃度量化結構−活性關係模式之發展與驗證 43
第四章 結果與討論 44
第一節 皮膚滲透係數量化結構−活性關係模式之發展與驗證 44
第二節 美國國家職業安全衛生研究所皮膚暴露危害預測模式中急性暴露適用呼吸劑量之發展與驗證 52
第三節 立即危害生命健康濃度量化結構−活性關係模式之發展與驗證 68
第五章 結論與建議 84
第一節 結論 84
第二節 研究限制 87
第三節 應用與建議 87
參考文獻 90
附錄一 本研究發展皮膚滲透係數之量化結構–活性關係式將使用之標的化學物與相關化學特性表列 109
附錄二 本研究建立美國國家職業安全衛生研究所皮膚暴露危害預測模式中急性暴露適用不同呼吸劑量計算之子模式於發展階段與驗證階段選用之標的化學物表列 115
附錄三 本研究修正皮膚暴露危害評估模式選用之立即危害生命健康濃度之標的化學物及其制定所欲防範之標的毒害效應資訊表列 126
附錄四 本研究發展以預防急性毒害效應為主之立即危害生命健康濃度量化結構−活性關係模式使用之標的化學物與相關化學特性資訊表列 290
附錄五 本研究發展以預防刺激發炎為主之立即危害生命健康濃度量化結構−活性關係模式使用之標的化學物與相關化學特性資訊表列 301
附錄六 本研究所發展之量化結構-活性關係預測模式透過DRAGON®軟體依據標的化學物分子結構進行初步篩選之分子描述符表列 305
附錄七 本研究建立美國國家職業安全衛生研究所皮膚暴露危害預測模式中急性暴露適用不同參考空氣濃度運算之子模式所產生之皮膚─呼吸劑量比值表列 321

參考文獻

1.Chen CP and Sartorelli P. Proceedings of the international conference on occupational and environmental exposures of skin to chemicals: science and policy—session II: health effects and hazard identification. Reg Toxicol Pharmacol 2005; 41:150-8.

2.Sartorellia P, Ahlers H, Alanko K, Chen CP, Cherrie J, Drexler H, Kezic S, Johanson G, Filon F, Maina G, Montomoli L, Nielsen J. How to improve skin notation. Position paper from a workshop. Reg Toxicol Pharmacol 2007; 49:301-7.

3.Bureau of Labor Statistics (BLS). Occupational injuries and illnesses in the United States. BLS Bulletin No. 2518. Department of Labor, BLS, Washington, DC, USA; 1999.

4.National Institute for Occupational Safety and Health (NIOSH). Pocket guide to chemical hazards. DHHS Publication [CD-ROM]; No. 2005-151. Department of Health and Human Services (HHS), Centers for Disease Control and Prevention (CDC), NIOSH, Cincinnati, OH, USA; 2013.

5.行政院勞工委員會。勞工作業環境空氣中有害物容許濃度標準。台北(台灣):中華民國行政院勞工委員會;2003。(民國92年12月31日修正條文)。

6.Ahlers H, Chen CP. Skin notation—past, present, future. Short Course S3.3 presented at the Occupational and Environmental Exposures of Skin to Chemicals (OEESC). Proceedings of the OEESC, 2005 June 12-15, Stockholm, Sweden.

7.American Conference of Governmental Industrial Hygienists (ACGIH). Documentation of the TLVs® and BEIs® with other worldwide occupational exposure values, CD-ROM. Cincinnati, OH, USA: ACGIH; 2006.

8.Ahlers HW, Chen CP, Demchuk E, and Dotson GS. A strategy for improvement of skin notations. DHHS Pub. No. 2009-147. Cincinnati, OH, USA: US National Institute for Occupational Safety and Health; 2009. 80 pp.

9.Chen CP, Boeniger MF, and Ahlers HW. Use of dermal LD50 as a criterion for skin notation. Appl Occup Environ Hyg 2003; 18:154-5.

10.Walker JD, Whittaker C, and McDougal JN. Role of the TSCA Interagency Testing Committee in meeting the U.S. government data needs: designating chemicals for percutaneous absorption rate testing. In: Marzulli FN, Maibach HI, editors. Dermatotoxicology, 5th ed. Washington DC, USA: Taylor & Francis; 1996. p. 371-81.

11.Dotson GS, Chen CP, Gadagbui B, Maier A, Ahlers HW, and Lentz TJ. The evolution of skin notations for occupational risk assessment: A new NIOSH strategy. Reg Toxicol Pharmacol 2011; 61:53-62.

12.Chen CP, Ahlers HW, Dotson GS, Lin YC, Chang WC, Maier A, and Gadagbui B. Efficacy of predictive modeling as a scientific criterion in dermal hazard identification for assignment of skin notations. Reg Toxicol Pharmacol 2011; 61:63-72.

13.Wilschut A, ten Berge WF, Robinson PJ, and McKone TE. Estimating skin permeation: the validation of five mathematical skin permeation models. Chemosphere 1995; 30:1275-96.

14.European Union. Regulation (EC) No 1907/2006 of the european parliament and of the council of 18 december 2006. concerning the registration, evaluation, authorisation and restriction of chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Official Journal of the European Union. OJ C 112, 30.4.2004, p. 92 and OJ C 294, 25.11.2005, p. 38.

15.European Union. EC Enterprise and Industry All topics: Chemicals, REACH, accessed: http://ec.europa.eu/enterprise/sectors/chemicals/
reach/index_en.htm (June 30, 2013). Brussels, Belgium: EU; 2013.

16.United Nations Economic Commission for Europe (UNECE). Globally Harmonized System of Classification and Labeling of Chemicals (GHS). ST/SG/AC.10/30/Rev.3. New York, NY, USA and Geneva, Switzerland: UNECE; 2009.

17.吳幸娟、陳振菶:非致癌性物質健康風險評估中不確定性係數之應用與規範研究。IOSH99-A308。臺北,臺灣:行政院勞工委員會勞工安全衛生研究所;2011。

18.陳振菶、吳幸娟、李聯雄、張詩吟:職業暴露限制值制定中健康風險評估之運用。勞工安全衛生研究季刊2013;21(1):53-66。

19.National Institute for Occupational Safety and Health (NIOSH). Documentation for Immediately Dangerous to Life or Health Concentrations (IDLHs): Introduction, accesses: http://www.cdc.gov/niosh/idlh/idlhintr.html. Atlanta, GA: NIOSH; 1994.

20.Organisation for Economic Cooperation and Development (OECD). Guideline for Testing of Chemicals 402: acute dermal toxicity. Paris, France: OECD; 1987.

21.29 CFR 1910.1000. Occupational Safety and Health Administration (OSHA). Occupational Safety and Health Standards. Washington, DC: OSHA.

22.National Toxicology Program (NTP). Corrositex®: an in vitro test method for assessing dermal corrosivity potential of chemicals. Research Triangle Park, NC: U.S. Department of Health and Human Services, Public Health Service, NTP, NIH Publication No. 99–4495; 1999a.

23.National Toxicology Program (NTP). The murine local lymph node assay: a test method for assessing the allergic contact dermatitis potential of chemicals/compounds. Research Triangle Park, NC: U.S. Department of Health and Human Services, Public Health Service, NTP, NIH Publication No. 99–4494; 1999b.

24.National Toxicology Program (NTP). Objectives and procedures of NTP studies: 2-year study. In: NTP testing information and study results. Research Triangle Park, NC: U.S. Department of Health and Human Services, Public Health Service, NTP; 2001a.

25.National Toxicology Program (NTP). Objectives and procedures of NTP studies: development toxicity. In: NTP testing information and study results. Research Triangle Park, NC: U.S. Department of Health and Human Services, Public Health Service, NTP; 2001b.

26.National Toxicology Program (NTP). National Toxicology Program Annual Plan for Fiscal Year 2002. Research Triangle Park, NC: U.S. Department of Health and Human Services, Public Health Service, NTP, NIH Publication No. 03–5309; 2002a.

27.National Toxicology Program (NTP). ICCVAM evaluation of EPISKINTM, EpiDermTM (EPI-200), and the rat skin transcutaneous electrical resistance (TER) assay: in vitro test methods for assessing dermal corrosivity potential of chemicals. Research Triangle Park, NC: U.S. Department of Health and Human Services, Public Health Service, NTP, NIH Publication No. 02–4502; 2002b.

28.U.S. Environmental Protection Agency (USEPA). Test methods for evaluating solid waste, physical/chemical methods, SW–846 Method 1120: dermal corrosion. Washington, DC: U.S. Environmental Protection Agency, Office of Solid Waste, EPA Publication SW–846 Manual, 3rd ed. Washington, DC: U.S. Environmental Protection Agency, Office of Solid Waste. Washington, DC, USA: USEPA; 1996.

29.U.S. Environmental Protection Agency (USEPA). Health effects test guidelines OPPTS 870.1200: acute dermal toxicity. Washington, DC: U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, EPA 712–C–98–192. Washington, DC, USA: USEPA; 1998a.
30.U.S. Environmental Protection Agency (USEPA). Health effects test guidelines OPPTS 870.3200: 21/28-day dermal toxicity. Washington, DC: U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, EPA 712–C–98–201. Washington, DC, USA: USEPA; 1998b.

31.U.S. Environmental Protection Agency (USEPA). Health effects test guidelines OPPTS 870.3250: 90-day dermal toxicity. Washington, DC: U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, EPA 712–C–98–202. Washington, DC, USA: USEPA; 1998c.

32.U.S. Environmental Protection Agency (USEPA). Health effects test guidelines OPPTS 870.4100: chronic toxicity. Washington, DC: U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, EPA 712–C–98–210. Washington, DC, USA: USEPA; 1998d.

33.U.S. Environmental Protection Agency (USEPA). Health effects test guidelines OPPTS 870.4200: carcinogenicity. Washington, DC: U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, EPA 712–C–98–211. Washington, DC, USA: USEPA; 1998e.

34.U.S. Environmental Protection Agency (USEPA). Health effects test guidelines OPPTS 870.4300: combined chronic toxicity/carcinogenicity. Washington, DC: U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, EPA 712–C–98–212. Washington, DC, USA: USEPA; 1998f.

35.U.S. Environmental Protection Agency (USEPA). Health effects test guidelines OPPTS 870.3700: prenatal developmental toxicity study. Washington, DC: U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, EPA 712–C–98–207. Washington, DC, USA: USEPA; 1998g.

36.U.S. Environmental Protection Agency (USEPA). Health effects test guidelines OPPTS 870.3800: reproduction and fertility effects. Washington, DC: U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, EPA 712–C–98–208. Washington, DC, USA: USEPA; 1998h.

37.U.S. Environmental Protection Agency (USEPA). Health effects test guidelines OPPTS 870.7800: immunotoxicity. Washington, DC: U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, EPA 712–C–98–351. Washington, DC, USA: USEPA; 1998i.

38.U.S. Environmental Protection Agency (USEPA). Health effects test guidelines OPPTS 870.2500: acute dermal irritation. Washington, DC: U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, EPA 712–C–98–196. Washington, DC, USA: USEPA; 1998j.

39.U.S. Environmental Protection Agency (USEPA). Health effects test guidelines OPPTS 870.2600: skin sensitization. Washington, DC: U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, EPA 712–C–03–197. Washington, DC, USA: USEPA; 2003.

40.U.S. Environmental Protection Agency (USEPA). Risk assessment guidance for superfund. Vol. I: Human health evaluation manual. Washington, DC: U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation, EPA/540/R/99/005. Washington, DC, USA: USEPA; 2004

41.U.S. Environmental Protection Agency (USEPA). 69 Fed. Reg. 22402. Environmental Protection Agency: in vitro dermal absorption rate testing of certain chemicals of interest to the Occupational Safety and Health Administration; final rule. Washington, DC, USA: USEPA; 2004.

42.Organisation for Economic Cooperation and Development (OECD). OECD guideline for testing of chemicals 410: repeated dose dermal toxicity—21/28-day study. Paris, France: OECD; 1981a.

43.Organisation for Economic Cooperation and Development (OECD). OECD guideline for testing of chemicals 411: subchronic dermal toxicity—90-day study. Paris, France: OECD; 1981b.

44.Organisation for Economic Cooperation and Development (OECD). OECD guideline for testing of chemicals 452: chronic toxicity studies. Paris, France: OECD; 1981c.

45.Organisation for Economic Cooperation and Development (OECD). OECD guideline for testing of chemicals 451: carcinogenicity studies. Paris, France: OECD; 1981d.

46.Organisation for Economic Cooperation and Development (OECD). OECD guideline for testing of chemicals 453: combined chronic toxicity/carcinogenicity studies. Paris, France: OECD; 1981e.

47.Organisation for Economic Cooperation and Development (OECD). OECD guideline for testing of chemicals 402: acute dermal toxicity. Paris, France: OECD; 1987.

48.Organisation for Economic Cooperation and Development (OECD). OECD guideline for testing of chemicals 406: skin sensitization. Paris, France: OECD; 1992.

49.Organisation for Economic Cooperation and Development (OECD). OECD proposal for a draft new guideline for the testing of chemicals: acute dermal irritation study in human volunteers. Paris, France: OECD; 1997.

50.Organisation for Economic Cooperation and Development (OECD). OECD Series on Testing and Assessment No. 33: harmonized integrated classification system for human health and environmental hazards of chemical substances and mixtures. ENV/JM/MONO(2001)6. Paris, France: Organisation for Economic Cooperation and Development, Environment Directorate, Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology. Paris, France: OECD; 2001a.

51.Organisation for Economic Cooperation and Development (OECD). OECD guideline for testing of chemicals 414: prenatal developmental toxicity study. Paris, France: OECD; 2001b.

52.Organisation for Economic Cooperation and Development (OECD). OECD guideline for testing of chemicals 416: two-generation reproduction toxicity study. Paris, France: OECD; 2001c.

53.Organisation for Economic Cooperation and Development (OECD). OECD guideline for testing of chemicals 404: acute dermal irritation/corrosion. Paris, France: OECD; 2002a.
54.Organisation for Economic Cooperation and Development (OECD). OECD guideline for testing of chemicals 429: skin sensitization—local lymph node assay. Paris, France: OECD; 2002b.

55.Organisation for Economic Cooperation and Development (OECD). OECD guideline for testing of chemicals 432: in vitro 3T3 NRU phototoxicity test. Paris, France: OECD; 2004a.

56.Organisation for Economic Cooperation and Development (OECD). OECD guideline for testing of chemicals 431: in vitro skin corrosion—human skin model test. Paris, France: OECD; 2004b.

57.Organisation for Economic Cooperation and Development (OECD). OECD guideline for testing of chemicals 430: in vitro skin corrosion—Transcutaneous electrical resistance test (TER). Paris, France: OECD; 2004c.

58.Organisation for Economic Cooperation and Development (OECD). OECD Series on Testing and Assessment No. 28: guidance document for the conduct of skin absorption studies. ENV/JM/MONO(2004)2. Paris, France: Organisation for Economic Cooperation and Development, Environment Directorate, Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology. Paris, France: OECD; 2004d.

59.Organisation for Economic Cooperation and Development (OECD). OECD guideline for testing of chemicals 428: skin absorption—in vitro method. Paris, France: OECD; 2004e.

60.European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC). Skin sensitisation testing for the purpose of hazard identification and risk assessment. ECETOC Monograph No.29. Brussels, Belgium: ECETOC; 2000.

61.European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC). Use of human data in hazard classification for irritation and sensitization. ECETOC Monograph No.32. Brussels, Belgium: ECETOC; 2002.

62.Sartorelli P, Ahlers HW, Alanko K, Chen CP, Cherrie JW, Drexler H, Kezic S, Johanson G, Filon FL, Maina G, Montomoli L, Nielsen JB. 2007. How to improve skin notation. Position paper from a workshop. Regulatory Toxicology and Pharmacology 49(3):301-307.

63.McDougal JN and Boeniger MF. Methods for assessing risks of dermal exposures in the workplace. Crit Rev Toxicol 2002; 32:291-327.

64.European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC). Examination of a proposed skin notation strategy. ECETOC Special Report No.15. Brussels, Belgium: ECETOC; 1998.

65.Frasch H, Dotson G, Bunge A, Chen CP, Cherrie JW, Kasting G, Kissel J, Sahmel J, Semple S, and Wilkinson S. Analysis of finite dose dermal absorption data: Implications for dermal exposure assessment. J Expo Sci Environ Epidemiol advance online publication 29 May 2013; doi: 10.1038/jes.2013.23.

66.Brown SL, Rossi JE. A Simple method for estimating dermal absorption of chemicals in water. Chemosphere 1989; 19:1989-2001.

67.Fiserova-Bergerova V, Pierce JT, and Droz PO. Dermal absorption potential of industrial chemicals: criteria for skin notation. Am J Ind Med 1990; 17:617-35.

68.McKone TE, Howd RA. Estimating dermal uptake of nonionic organic chemicals from water and soil: I. unified fugacity-based models for risk assessments. Risk Anal 1992; 12:543-57.

69.Guy RH, Potts RO. Penetration of industrial chemicals across the skin: a predictive model. Am J Ind Med 1993; 23:711-9.

70.Robinson PJ. A composite model for predicting dermal penetration in vivo. Cincinnati, OH, USA: The Proctor & Gamble Company, Human and Environmental Safety Division; 1993.

71.Chang YC, Chen CP, and Chen CC. Predicting skin permeability of chemical substances using a quantitative structure-activity relationship. Procedia Engineering 2012; 45:875-9.

72.Potts RO, Guy RH. Predicting skin permeability. Pharmaceutical Res 1992; 9:663-9.

73.Potts RO, Guy RH. A predictive algorithm for skin permeability: the effects of molecular size and hydrogen bond activity. Pharmaceutical Res 1995; 12:1628-33.

74.Talete srl. DRAGON User Manual. DRAGON for Windows and Linux 2007, Version 5.5, available from: http://www.talete.mi.it/. Milano, Italy: Talete srl.; 2007.

75.Lien EJ, Gao H. QSAR analysis of skin permeability of various drugs in man as compared to in vivo and in vitro studies in rodents. Pharmaceutical Res 1995; 12:583-7.
76.Barratt DM. Quantitative structure-activity relationships for skin permeability. Toxicol in Vitro 1995; 9:27-37.

77.Abraham MH, Chadha HS, and Mitchell RC. The factors that influence skin penetration of solutes. J Pharm Pharmacol 1995; 47: 8-16.

78.Abraham MH, Chadha HS, Martins F, Mitchell RC, Bradbury MW, and Gratton JA. Hydrogen bonding part 46: a review of the correlation and prediction of transport properties by an LFER method: physicochemical properties, brain penetration and skin permeability. Pesticide Sci 1999; 55:78-88.

79.Patel H, ten Berge W, Cronin MTD. Quantitative structure–activity relationships (QSARs) for the prediction of skin permeation of exogenous chemicals. Chemosphere 2002; 48:603-13.

80.Mitragotri S. A theoretical analysis of permeation of small hydrophobic solutes across the skin based on scaled particle theory. J Pharm Sci 2002; 91:754-57.

81.Lian G, Chen L, Han L. An evaluation of mathematical models for predicting skin permeability. J Pharmaceutical Sci 2008; 97:584-98.

82.National Institute for Occupational Safety and Health (NIOSH). Documentation for Immediately Dangerous to Life or Health concentrations (IDLH). NTIS Pub. No. PB-94-195047. Cincinnati, OH, USA: NIOSH; 1995.

83.張晏青,陳振菶。工業化學毒物皮膚暴露危害預測模式—適用一般作業環境暴露與短期高濃度暴露之模式比較。屏東,台灣:中華民國環境工程學會2010年會暨工安衛與防災研討會;2010年11月13日。

84.Flynn GL. Physicochemical determinants of skin absorption. In: Gerrity TR, Henry CJ, editors. Principles of Route-to-Route Extrapolation for Risk Assessment. New York, NY, USA: Elsevier Sci. Pub. Co.; 1990. pp. 93-127.

85.Demuth, H.; Beale, M.; Hagan, M. NeuralNetwork Toolbox─User’s Guide. Version 5. The MathWorks. Inc. 2006.

86.Hypercube Inc. Reference Manual. HyperChem® Release 8.0 for Windows® Molecular Modeling System. Waterloo, ON, Canada: Hypercube Inc.; 2008.

87.The MathWorks, Inc. MATLAB Statistical Toolbox v7.7 – User Guide. Natick, MA, USA: The MathWorks, Inc.; 2009.

88.Chen CC, Liaw HJ, Tsai YJ. Prediction of Flash Point of Organosilicon Compounds Using Quantitative Structure Property Relationship Approach. Ind Eng Chem Res 2010; 49:12702-8.

89.National Institute for Occupational Safety and Health (NIOSH). Registry of Toxic Effects of Chemical Substances (RTECS®) Database. CD-ROM. Cincinnati, OH, USA: NIOSH; 2001.

90.Syracuse Research Corporation (SRC). PhysProp Database, available from: http://www.syrres.com/esc/physprop.htm. Arlington, VA, USA: SRC; 2010.

91.American Conference of Governmental Industrial Hygienists (ACGIH). 2013 TLVs® and BEIs® Based on the Documentation of the Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices. Cincinnati, OH, USA: ACGIH; 2013.

92.Occupational Safety and Health Administration (OSHA). The OSHA permissible exposure limits (PELs), OSHA General Industry Air Contaminants Standard (29 CFR 1910.1000), Tables Z-1, Z-2, and Z-3. Washington, DC: OSHA; 1989.

93.National Institute for Occupational Safety and Health (NIOSH). NIOSH Pocket Guide to Chemical Hazards (NPG), available from: http://www.cdc.gov/niosh/npg/search.html. Atlanta, GA: NIOSH; 2010.

94.Health and Safety Executive (HSE). EH40/2005 Workplace exposure limits. London, United Kingdom: HSE; 2013.

95.Deutsche Forschungsgemeinschaft. List of MAK and BAT Values 2012. Report No. 48 of the Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area. Maximum Concentrations and Biological Tolerance Values at the Workplace. Bonn, Federal Republic of Germany: Deutsche Forschungsgemeinschaft; 2012.

96.The Health Council of the Netherlands (Gezondheidsraad). The Health Council of the Netherlands: Healthy working conditions, available from: http://www.gezondheidsraad.nl/en/publications/healthy-working-conditions. The Hague, the Netherlands; 2000-2005.

97.Sosiaali- ja terveysministeriön asetus. Sosiaali- ja terveysministeriön päätöksen mukaisesti säädetään työturvallisuuslain (738/2002). Helsingissä, Finland: Sosiaali- ja terveysministeri; 2011.

98.Arbetsmiljöverkets författningssamling (AFS). Hygieniska gränsvärden Arbetsmiljöverkets föreskrifter och allmänna råd om hygieniska gränsvärden. Stockholm, Sweden: AFS; 2011.

99.The Japan Society for Occupational Health (JSOH). Recommendation of Occupational Exposure Limits (2012-2013). J Occup Health 2012; 54:387-404.

100.Safe Work Australia. Hazardous Substances Information System (HSIS): Search Exposure Standards, accesses: http://hsis.safeworkaustralia.gov.au/ExposureStandards. Canberra, Australia: Safe Work Australia; 2012.

101.Arbeidstilsynet. Veiledning om Administrative normer for forurensning i arbeidsatmosfare. Oslo, Norway: Arbeidstilsynet; 2011.

102.Slawomir Czerczak and Malgorzata Kupczewska. Assignment of Skin Notation for Maximum Allowable Concentration (MAC) List in Poland. Appl Occup Environ Hyg 2002; 17: 187-99.

103.European Union. COMMISSION DIRECTIVE 2000/39/EC of 8 June 2000 establishing a first list of indicative occupational exposure limit values in implementation of Council Directive 98/24/EC on the protection of the health and safety of workers from the risks related to chemical agents at work. Official Journal of the European Union OJ L 142, 16.6.2000, p.47.

104.European Union. COMMISSION DIRECTIVE 2006/15/EC of 7 February 2006 establishing a second list of indicative occupational exposure limit values in implementation of Council Directive 98/24/EC and amending Directives 91/322/EEC and 2000/39/EC. Official Journal of the European Union OJ L 142, 16.6.2000, p. 47.

105.European Union. COMMISSION DIRECTIVE 2009/161/EU of 17 December 2009 establishing a third list of indicative occupational exposure limit values in implementation of Council Directive 98/24/EC and amending Commission Directive 2000/39/EC. Official Journal of the European Union OJ L 38, 9.2.2006, p. 36.

106.The Government of Alberta. Occupational Health and Safety Code 2009. Edmonton, Canada: the Government of Alberta; 2009.

107.The Occupational Health and Safety Regulation (OHSR). Table of exposure limits for chemical and biological substances. British Columbia, Canada: OHSR; 2012.

108.Ministry of Labour. Occupational Exposure Limits (OELs) for Ontario Workplaces. Ontario, Canada: Ministry of Labour; 2013.

109.Officiel du Québec. Règlement sur la santé et la sécurité du travail - Loi sur la santé et la sécurité du travail, Annex I, Part 1, Valeurs d’exposition admissibles des contaminants de l’air. Québec, Canada: Officiel du Québec; 2013.

110.The Belgian Federal Public Service Employment, Labour and Social Dialogue. Liste de valeurs limites d’expositions professionnelle aux agents chimiques. Belgium: The Belgian Federal Public Service Employment, Labour and Social Dialogue; 2002.

111.The OELs in Brazil cover their standard a 48-hour workweek. Quadro I do Anexo 11 da NR-15 Tabela de Limites de Tolerância. Brazil; 2010.

112.中华人民共和国卫生部。中华人民共和国国家职业卫生标准─工作场所有害因素职业接触限值化学有害因素(GBZ 2.1-2007)。北京市,中华人民共和国:中华人民共和国卫生部,2007年。

113.Instituto Nacional de Seguridad e Higiene en el Trabajo (INSHT). Límites de Exposición Profesional para Agentes Químicos en España 2013.

114.National Library of Medicine (NLM). Toxicology Data Network (TOXNET) ChemIDplus Database, available from: http://toxnet.nlm.nih.gov/. Bethesda, MD, USA: NLM; 2011.

115.National Institute of Standards and Technology (NIST). Chemistry WebBook, available from: http://webbook.nist.gov/chemistry/. Gaithersburg, MD, USA: NIST; 2011.

116.ten Berge WF, Zwart A, and Appleman LM. Concentration-time mortality response relationship of irritant and systematically acting vapours and gases. J Haz Mat 1986; 13:301-9.

117.Golbraikh, A.; Tropsha, A. Beware of q2! J Mol Graph Model, 2002; 20:269-276.

118.Fitzpatrick D, Corish J, Hayes B. Modelling skin permeability in risk assessment–the future. Chemosphere 2004; 55:1309-14.

119.Bronaugh RL, Congdon ER, Scheuplein RJ. The effect of cosmetic vehicles on the penetration of n-nitrosodiethanolamine through excised human skin. J Invest Dermatol, 1981; 76:94-6.

120.Franz TJ, Lehman PA, Franz SF, et al. Percutaneous penetration of n-nitrosodiethanolamine through human skin (in vitro): comparison of finite and infinite dose applications from cosmetic vehicles. Fund Appl Toxicol, 1993; 21:213-21.

121.Brain KR, Walters KA, James VJ, et al. Percutaneous penetration of dimethylnitrosamine through human skin in vitro: application from cosmetic vehicles. Food Chem Toxicol, 1995; 33:315-22.

122.Helguera A, Cordeiro M, González M, Pérez M, Ruiz R, Castillo Y. QSAR modeling for predicting carcinogenic potency of nitroso-compounds using 0D-2D molecular descriptors. The 11th International Electronic Conference on Synthetic Organic Chemistry. ECSOC Proceedings ECSOC-11, 2007 November 1-30, Basel, Switzerland.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top