跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 07:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹茗皓
研究生(外文):Chan, Ming-Hao
論文名稱:具負載適應增益調適混合信號控制之邊界模式功率因數修正交-直流轉換器
論文名稱(外文):Design of a Load Adaptive Gain Adjustment Mixed-Signal Critical Mode PFC AC-DC Converter
指導教授:鄒應嶼鄒應嶼引用關係
指導教授(外文):Tzou, Ying-Yu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電控工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:英文
論文頁數:77
中文關鍵詞:邊界模式功率因數修正混合信號控制數位帶拒濾波器負載適應增益調適
外文關鍵詞:critical-conduction-mode PFCmixed-signal controldigital notch filterload adaptive gain adjustment
相關次數:
  • 被引用被引用:1
  • 點閱點閱:814
  • 評分評分:
  • 下載下載:214
  • 收藏至我的研究室書目清單書目收藏:0
本論文研製具負載適應增益調適混合信號控制之邊界模式功率因數修正(critical-mode power-factor-correction, CRM PFC)交-直流轉換器,可應用於中低功率電子設備如:可攜式電子產品或照明設備。本文所研製的混合信號控制其中電流迴路使用類比方式實現,電壓迴路則以數位方式實現。本文並提出負載適應增益調適(load adaptive gain adjustment)以及帶拒濾波器(notch filter)於數位電壓迴路,使系統輸出電壓可達到最佳動態特性且仍可使輸入電流具備低總諧波失真(total-harmonic-distortion, THD)以及高功率因數(power-factor, PF)。在類比電流迴路中,類比電流比較器為抑制雜訊的影響會加入磁滯比較區間 (hysteresis band),但是磁滯比較區間過大會導致系統輸入線電流失真;另外,由於交-直流轉換器中開關以及二極體的寄生效應使得在切換過程會產生高頻振盪,因此零電流偵測比較器的參考電壓大小會影響開關導通時刻,進而影響輸入電流的諧波失真,因此本論文針對磁滯比較區間以及參考電壓大小對於輸入電流諧波失真的影響進行分析,並選取適當的磁滯比較區間及參考電壓值以符合輸入電流規範。在數位電壓迴路中,類比數位轉換器(analog-to-digital converter, ADC)以及數位類比轉換器(digital-to-analog converter, DAC)量化效應會使電流命令波形失真,而進一步使輸入電流波形失真,因此本論文分析如何選取適當的取樣率(sampling rate)以及位元長度(bit length)。交-直流轉換器為了使輸入線電流不受市電兩倍頻漣波的影響,因而限制輸出電壓暫態響應速度,本論文加入帶拒濾波器於電壓迴路,濾除兩倍線頻,以提升系統的動態響應並且使線電流不受輸出電壓漣波的影響。由於在不同負載情況下,系統的動態特性也隨之變動,本論文提出負載適應增益調適機制,根據不同負載狀況,適時修正電壓控制器參數,使系統輸出動態響應於不同負載狀況下皆能維持穩定且快速的動態響應。本論文使用電路模擬軟體PSIM驗證所提出控制架構,在實驗驗證方面使用德州儀器 (Texas Instrument, TI)推出之數位信號處理器DSP(TMS320LF2407)實現數位電壓迴路,而類比電流迴路則以意法半導體(STMicroelectronis)推出的CRM PFC IC L6561實現。由模擬及實驗結果相互驗證本論文所提之控制架構;加入帶拒濾波器,當頻寬提昇至30 Hz時,輸入線電流的總諧波失真在滿載狀況下仍可維持在6 %;而負載適應增益調適機制,使得在輕載或重載情況下,進行相同負載變化量的切載測試,其動態響應速度以及穩定度皆相同,因此可顯示此控制架構的可行性及有效性。
This thesis develops a mixed-signal critical mode power-factor-correction (PFC) AC-DC converter with load adaptive gain scheduling. The peak current mode control is applied and analyzed by using the analog circuit. The voltage control loop is implemented in digital approach by using a digital notch filter and load adaptive gain adjustment to optimize the dynamic responses and maintain high power-factor (PF) with low total-harmonic-distortion (THD) in line current.
This thesis analyzes the effect of the hysteresis band effect of the analog current comparator and the effect of the reference voltage in zero current detecting comparator on current command. In digital voltage loop, the proper quantization resolutions of both analog-to-digital converter (ADC) and digital-to-analog converter (DAC) are analyzed and determined. The digital voltage controller uses a digital notch filter to achieve fast dynamic response and still maintain low THD with high PF. An adaptive gain sheduling is applied for achieving the optimal dynamic response of the output voltage at different load variation conditions. The proposed mixed-signal PFC AC-DC converter with load adaptive gain scheduling has been verified by using computer simulation software (PSIM). This thesis uses the DSP EVM board TMS320LF2407 from Texas Instrument and the CRM PFC IC L6561 from STMicroelectronics to implement the experimental verification. The simulation and experimental results can verify the viability and effectiveness of the proposed control architecture.

Abstract (Chinese) i
Abstract (English) iii
Acknowledgement iv
Table of Contents v
List of Tables vii
List of Figures viii
Chapter 1. Introduction 1
1.1 Research Background and Recent Development 1
1.2 Research Motivation and Purpose 3
1.3 The Research Methods and System Overview 4
1.4 Thesis Organization……………………………………………………...6
Chapter 2. Analysis of CRM PFC AC-DC Converter 7
2.1 Fundamental Principles of PF 7
2.2 Introduction of CRM PFC Control Architecture 9
2.3 Architecture of Mixed-Signal CRM PFC AC-DC Converter 12
2.4 Analysis of CRM PFC Power Stage 15
2.4.1 Analysis and Design of CRM PFC Power Stage 15
2.4.2 Calculation of Current RMS Values for Power Components 21
Chapter 3. Analysis and Design of Mixed-Signal CRM PFC AC-DC Converter 26
3.1 Analysis and Design of Analog Current Control Loop 26
3.1.1 Design of the Current Loop Comparator 26
3.1.2 Design of ZCD Comparator 29
3.2 Analysis and Design of Digital Voltage Control Loop 31
3.2.1 Issues of Quantization Effect on Digital Control 31
3.2.2 Sampling Frequency Selection 31
3.2.3 Determination of Bit Resolution 34
3.2.3.1 Rectified Line Voltage ADC Resolution 38
3.2.3.2 Output Voltage ADC Resolution 40
3.2.3.3 DAC Resolution of Current Command 41
Chapter 4. Discrete Small-Signal Analysis and Controller Design of Digital Voltage Loop 43
4.1 Discrete Time Small-Signal Model of Voltage Loop 43
4.2 Design of Digital Voltage Controller 50
4.2.1 Design of Voltage Compensator 50
4.2.2 Design of Digital Notch Filter 55
4.2.3 Design of Load Adaptive Gain Adjustment 57
Chapter 5. Implementation of Mixed-Signal CRM PFC and Experimental Results Analysis 60
5.1 Laboratory Setup 60
5.1.1 Development of Current Control Loop with L6561 60
5.1.2 Development of Voltage Control Loop with DSP 62
5.2 Analysis of Experimental Results 64
5.3.1 Analysis of Steady-State Experimental Results 64
5.3.2 Analysis of Experimental Results with Notch Filter 67
5.3.3 Analysis of Experimental Results with Load Adaptive Adjustment 70
Chapter 6. Conclusion 72
Reference 73
Vita 76

[1] K. Rustom and I. Batarseh, “Recent advances in single-stage power factor correction,” IEEE Industrial Technology, vol. 2, pp. 1089-1095, Dec. 2003.
[2] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. on Power Electronics, vol. 18, pp. 749-755, May 2003.
[3] L. Rossetto, G. Spiazzi, and P. Tenti, “Control techniques for power factor correction converters,” Power Electronics and Motion Control Conf. Proc., 1994..
[4] J. Sebastian, M. Jaureguizar, and J. Uceda, “An overview of power factor correction in single-phase off-line power supply systems,” IEEE IECON Conf. Rec., vol. 3, pp. 1688-1693, Sept. 1994.
[5] J. B. Williams, “Design of feedback loop in unity power factor AC to DC converter,” IEEE PESC Conf. Rec., vol. 2, pp. 959-967, Jun 1989.
[6] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. on Industrial Electronics, vol. 50, no. 5, pp. 962-981, Oct. 2003.
[7] 宋自恆, 林慶仁, “功率因數修正電路之原理與常用元件規格,” 新電子科技雜誌第217期, 2004年4月號
[8] R. Zane and D. Maksimovic, “A mixed-signal ASIC power-factor-correction (PFC) controller for high frequency switching rectifiers,” IEEE PESC Conf. Rec., pp. 117-122, Jul. 1999.
[9] L. T. Jakobsen and A. E. Andersen, “Comparison of two different high performance mixed signal controllers for DC/DC converters,” IEEE Compel Workshop, July 2006.
[10] M. Chen, A. Mathew, and J. Sun, “Mixed-signal control of single-phase PFC based on a nonlinear current control method,” IEEE PESC Conf. Rec., June 2006.
[11] A. Prodic and D. Maksimovic, “Mixed-signal simulation of digitally controlled switching converters,” Proc. IEEE COMPEL, pp. 100-104, June 2002.
[12] J. S. Lai and D. Chen, “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode,” IEEE APEC Conf. Proc., pp. 267-273, March, 1993.
[13] J. Turchi, Power factor correction stages operating in critical conduction mode, ON Semiconductor, Appl. Note AND8123, Sep. 2003.
[14] M. Gotfryd, “Limits in boost power factor corrector operating in border-line mode,” IEEE Trans. on Power Electronics, vol. 18, pp. 1330-1335, Nov. 2003.
[15] D. S. Chen and J. S. Lai, “A study of power correction boost converter operating at CCM-DCM mode,” IEEE SECON Conf. Rec., Apr. 1993.
[16] A. Abramovitz, “Effect of the ripple current on power factor of CRM boost APFC,” IEEE IPEMC Conf. Rec., pp. 1-4, Aug. 2006.
[17] L. Huber, B. T. Irving, and M. M. Jovanovic, “Line current distortions of DCM/CCM boundary boost PFC converter,” IEEE APEC Conf. Proc., pp. 702-708, Feb. 2008.
[18] C. Bridge and L. Balogh, Understanding interleaved boundary conduction mode PFC converters, Fairchild Power Seminars, 2008-2009.
[19] L. Balogh, A practical introduction to digital power supply control, TI Unitrode Design Seminars, 2004-2005.
[20] S. Buso and P. Mattavelli, “Digital Control in Power Electronics,” Morgan & Claypool Publishers, pp. 27-29, 2006.
[21] M. Xie, “Digital Control for Power Factor Correction,” Master thesis, Virginia Tech, 2003.
[22] C. Adragna, Control loop modeling of L6561-baded TM PFC, STMicroelectronics, Appl. Note AN1089, Mar. 2000.
[23] R. B. Ridley, Average small-signal analysis of the boost power factor correction circuit, VPEC Seminar, 1989.
[24] M. Shen, Z. Qian, and M. Chen, “Analysis and average modeling of critical mode boost PFC converter,” IEEE PEDS Conf. Proc., vol. 1, pp. 138-141, Oct. 2001.
[25] A. Prodic, J. Chen, R. W. Erickson, and D. Maksimovic, “Digitally controlled low-harmonic rectifier having fast dynamic responses,” IEEE APEC Conf. Proc., pp. 476-482, 2002.
[26] S. Buso and P. Mattavelli, “Simple digital control improving dynamic performance of power factor preregulators,” IEEE Trans. on Power Electronics, vol. 13, no. 5, Sep. 1998.
[27] K. Hirano, S. Nishimura, and S. Mitra, “Design of digital notch filters,” IEEE Trans. Commun., vol. 22, no. 7, pp. 964-970, Jul. 1974.
[28] M. Ilic and D. Maksimovic, “Digital Average Current-Mode Controller for DC–DC Converters in Physical Vapor Deposition Applications,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1428-1436, May 2008.
[29] K. J. Astrom and B. Wittenmark, Adaptive Control, 2nd ed. Reading, MA: Addison Wesley, 1994.
[30] C. Ortmeyer and C. Adragna, Design tips for L6561 power factor corrector in wide range, STMicroelectronics, Appl. Note AN1214, Dec. 2000.
[31] C. Adragna, L6561 enhanced transition mode power factor corrector, STMicroelectronics, Appl. Note AN966, Mar. 2003.
[32] “Power factor corrector,” STMicroelectronics, Datasheet, June 2004.
[33] “Design and apply to power factor correction circuit using SG6961,” System General, Appl. Note AN6961.
[34] “Power-factor controller IC for high power factor and active harmonic filter,” Infineon Technologies, Datasheet, Version 2.1, Feb. 2005.
[35] M. Herfurth and W. Frank, TDA4863-technical description, Infineon Technologies, Appl. Note AN-PFC-TDA4863-1, Version 1.2, Oct. 2003.
[36] W. Frank, Getting started with TDA4863, Infineon Technologies, Appl. Note AN-PFC-TDA4863-2, Version 1.0, April. 2002.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top