|
第7章、參考文獻 [1] REN 21, Renewables 2016 global status Report (http://www.res4africa.org/library/ren-21/) [2] C. J. Wei, Effect of activated graphite felt on the performance of all-vanadium redox flow batteries, Department of Materials Science and Engineering, Feng Chia University, 2012. [3] J. H. Lee, Electrochemical study of the graphite/glassy carbon composite electrodes in all-vanadium redox flow cell, Department of Chemistry, Fu Jen Catholic University, 2008. [4] S. M. A. Price, S. Bartltey, G. Cooley, A novel approach to utility scale energy storage, Power Engineering Journal, 13, 121-222, 1999. [5] C. Ding, H. Zhang, X. Li, T. Liu, F. Xing, Vanadium flow battery for energy storage: prospects and challenges, Journal of Physical Chemistry Letters, 4, 1281–1294, 2013. [6] A. Cunha, J. Martins, N. Rodrigues, F.P. Brito, Vanadium redox flow batteries: a technology review, International Journal of Energy Research, 39, 889-918, 2015. [7] X. F. Xie, C.C. Ma, J. C. Chiang, M. C. Hsiao, S. H. Yang, L. H. Chang, New energy storage battery - principles and development of vanadium redox flow battery, Chemistry, 70, 237-246, 2012. [8] M. Skyllas-Kazacos, M. H. Chakrabarti, S. A. Hajimolana, F. S. Mjalli, M. Saleemd, Progress in flow battery research and development, Journal of The Electrochemical Society, 158(8), 1-25, 2011. [9] A. F. F. C. Ponce de León, J. González-García, D. A. Szánto, F. C. Walsh, Redox flow cells for energy conversion, Journal Power Sources, 160, 716-732, 2006. [10] M. Q. Zhang, M. Moore, J. S. Watson, T. A. Zawodzinski and R. M. Counce, Capital cost sensitivity analysis of an all-vanadium redox-flow Battery, Journal of The Electrochemical Society, 159, 1183-1188, 2012. [11] L. Yue, W. S. Li, F. Q. Sun, L. Z. Zhao, L. D. Xing, Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery, Carbon, 48, 3079-3090, 2010. [12] M. R. M. Skyllas-Kazacos, R. Robins, All-vanadium redox battery, U.S. Patent 4,786,567 A, 1988. [13] M. S.-K. B. Sun, Chemical modification of graphite electrode material for vanadium redox flow battery application-part II. Acid treatments, Electrochimica Acta, 37, 2459-2465, 1992. [14] L.H. Thaller, Redox flow cell energy storage systems, NASA TM-79143, DOE/NASA/1002-79/3, 1979. [15] L. Swette, V. Jalan, Development of electrodes for the NASA iron/chromium redox system and factors affecting their performance, NASA CR-174724, DOE/NASA/0262-1, 1984. [16] R. F. Gahn, N. H. Hagedorn, J. A. Johnson, Cycling performance of the iron chromium redox energy storage system, NASA TM-87034, NASA, Dept.of Energy, US, 1985. [17] P. Morrissey, Regenesys: a new energy storage technology, International Journal of Ambient Energy, 21 (4) 213, 2000. [18] M. Skyllas-Kazacos, A. Mousa, M. Kazakos, Metal bromide redox flow cell, PCT Application, PCT/GB2003/001757, 2003. [19] M. Skyllas-Kazacos, H. Prifti, A. Parasuraman, S. Winardi, T. M. Lim Membranes for redox flow battery applications, Membranes, 2, 275-306, 2012. [20] U. S. D. O. Energy, Redox flow cell development and demonstration project, NASA TM-790671979. [21] M. Skyllas-Kazacos, C. Menictas, M. Kazacos, Thermal stability of concentrated V (V) electrolytes in the vanadium redox Cell, Journal of The Electrochemical Society, 143, 86-88, 1996. [22] M. J. Watt-Smith, H. Al-Fetlawi, P. Ridley, R. G. A. Wills, A. A. Shah, F. C. Walsh, The importance of key operational variables and electrolyte monitoring to the performance of an all vanadium redox flow battery, Journal of Chemical Technology and Biotechnology, 88, 126-138, 2013. [23] C. W. Monroe, A. A. Shinkle, A. E.S. Sleightholme, L. D. Griffith,L. T. Thompson, Degradation mechanisms in the non-aqueous vanadium acetylacetonate redox flow battery, Journal of Power Sources, 206, 490-496, 2012. [24] J. Xi, Z. Wu, X. Qiu, L. Chen, Nafion/SiO2 Hybrid membrane for vanadium flow battery, Journal of Power Sources, 166, 531-536, 2007. [25] M. H. Chakrabarti, N. P. Brandon, S. A. Hajimolana, F.Tariq, V. Yufit, M. A. Hashim, M. A. Hussain, C. T. J. Low, P. V. Aravind, Application of carbon materials in redox flow batteries, Journal of Power Sources, 253, 150-166, 2014. [26] A. Parasuraman, T. M. Lim, C. Menictas, M. Skyllas-Kazacos, Review of material research and development for vanadium flow battery applications, Electrochimica Acta, 101, 27-40, 2013. [27] K. J. Kim, M. S. Park, Y. J. Kim, J. H. Kim, S. X. Dou, M. Skyllas-Kazacos, A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries, Journal of Materials Chemistry A, 3, 16913-16933, 2015. [28] B. Sun, M. Skyllas-Kazacos, Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment, Electrochimica Acta, 37, 1253-1260, 1992. [29] M. Gattrell, J. Qian, C. Stewart, P. Graham, B. MacDougall, The electrochemical reduction of VO2+ in acidic solution at high overpotentials, Electrochimica Acta, 51, 395-407, 2005. [30] C. Gao, N. F. Wang, S. Peng, S. Q. Liu, Y. Lei, X. X. Liang, S. S. Zeng, H. F. Zi, Influence of Fenton’s reagent treatment on electrochemical properties of graphite felt for all vanadium redox flow battery, Electrochimica Acta, 88, 193-202,2013. [31] X. Wu, H. Xu, Y. Shen, P. Xu, L. Lu, J. Fu, H. Zhao, Treatment of graphite felt by modified Hummers method for the positive electrode of vanadium redox flow battery, Electrochimica Acta, 138, 264-269, 2014. [32] X. Qiu, J. Xi, W. Zhang, Z. Li, H. Zhou, L. Liu, Z. Wua, Electrochemical activation of graphite felt electrode for VO2+/VO2+ redox couple application, Electrochimica Acta, 89, 429-435, 2013. [33] M. S. Park, K. J. Kim, Y. J. Kim, J. H. Kim, The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries, Materials Chemistry and Physics, 131, 547-553, 2011. [34] O. O. Park, J. J. Park, J. H. Park, J. H. Yang, Highly porous graphenated graphite felt electrodes with catalytic defects for high-performance vanadium redox flow batteries produced via NiO/Ni redox reactions, Carbon, 110, 17-26, 2016. [35] Z. Zhang, J. Xi, H. Zhou, X. Qiu, KOH etched graphite felt with improved wettability and activity for vanadium flow batteries, Electrochimica Acta, 218, 15-23, 2016. [36] Z. González, A. Sánchez, C. Blanco, M. Granda, R. Menéndez, R. Santamaría, Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery, Electrochem. Commun, 13, 1379-1382, 2011. [37] B. Li, M. Gu, Z. Nie, Y. Shao, Q. Luo, X. Wei, X. Li, J. Xiao, C. Wang, V. Sprenkle, W. Wang, Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery, Nano Letters, 13, 1330-1335, 2013. [38] D. J. Suárez, Z. Gonzalez, C. Blanco, M. Granda, R. Menendez, R. Santamaria, Graphite felt modified with bismuth nanoparticles as negative electrode in a vanadium redox flow battery, ChemSusChem, 7, 914-918, 2014. [39] T. Liu, X. Li, H. Nie, C. Xu, H. Zhang, Investigation on the effect of catalyst on the electrochemical performance of carbon felt and graphite felt for vanadium flow batteries, Journal of Power Sources, 286, 73-81, 2015. [40]G. Wei, X. Fan, J. Liu, C. Yan, Electrospun carbon nanofibers/electrocatalyst hybrids as asymmetric electrodes for vanadium redox flow battery, Journal of Power Sources, 281,1-6, 2015. [41] C. A. Yao, H. M. Zhang, T. Liu, X. F. Li, Z. H. Liu, Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery, Journal of Power Sources, 218, 455-461, 2012. [42] Y. Shen, H. Xu, P. Xu, X. Wu, Y. Dong, L. Lu, Electrochemical catalytic activity of tungsten trioxide- modified graphite felt toward VO2+/VO2+ redox reaction, Electrochimica Acta, 132, 37-41, 2014. [43] D. M. Kabtamu, J. Y. Chen, Y. C. Chang, C. H. Wang, Electrocatalytic activity of Nb-doped hexagonal WO3 nanowire-modified graphite felt as a positive electrode for vanadium redox flow batteries, Journal of Materials Chemistry A, 4, 11472, 2016. [44] X. Xie, W. Mu, X. Li, H. Wei, Y. Jian, Q. Yu, R. Zhang, K. Lv, H. Tang, S. Luo, Incorporation of tantalum ions enhances the electrocatalytic activity of hexagonal WO3 nanowires for hydrogen evolution reaction, Electrochimica Acta, 134, 201-208, 2014. [45] K. J. Kim, M. S. Park, J. H. Kim, U. Hwang, N. J. Lee, G. Jeong, Y. J. Kim, Novel catalytic effects of Mn3O4 for all vanadium redox flow batteries, Chemical Communications, 48, 5455-5457, 2012. [46] Z. He, L. Dai, S. Liu, L. Wang, C. Li, Mn3O4 anchored on carbon nanotubes as an electrode reaction catalyst of V(IV)/V(V) couple for vanadium redox flow batteries, Electrochimica Acta, 176, 1434-1440, 2015. [47]A. Ejigu, M. Edwards, D. A. Walsh, Synergistic Catalyst−support interactions in a graphene−Mn3O4 electrocatalyst for vanadium redox flow batteries, ACS Catalysis, 5 (12), 7122-7130, 2015. [48] B. Li, M. Gu, Z. Nie, X. Wei, C. Wang, V. Sprenkle, W. Wang, Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery, Nano Letters, 14, 158-165, 2014. [49]X. X. Wu, H. F. Xu, L. Lu, H. Zhao, J. Fu, Y. Shen, P. C. Xu, Y. M. Dong, PbO2-modified graphite felt as the positive electrode for an all-vanadium redox flow battery, Journal of Power Sources, 250, 274-278, 2014. [50] H. Zhou, Y. Shen, J. Xi, X. Qiu, L. Chen, ZrO2-nanoparticle-modified graphite felt: bifunctional effects on vanadium flow batteries, ACS Applied Materials & Interfaces, 8 (24), 15369-15378, 2016. [51]H. Zhou, J. G. Xi, Z. H. Li, Z. G. Zhang, L. H. Yu, L. Liu, X. P. Qiu, L. Q. Chen, CeO2 embedded electrospun carbon nanofibers as the advanced electrode with high effective surface area for vanadium flow battery, RSC Advances 4, 61912-61918, 2014. [52]W. H. Wang, X. D. Wang, Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery, Electrochimica Acta, 52, 6755-6762, 2007.
|