跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/09/30 05:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:汪意紘
研究生(外文):Yi-Hung Wang
論文名稱:石墨氈表面改質對其電化學性質及全釩液流電池之影響
論文名稱(外文):Effect of modified graphite felts on their electrochemical properties for all-vanadium redox flow battery
指導教授:洪逸明
指導教授(外文):I-Ming Hung
口試委員:楊永欽張仍奎
口試委員(外文):Yung-Chin YangJeng-Kuei Chang
口試日期:2017-07-18
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:75
中文關鍵詞:全釩氧化還原液流電池液流電池石墨氈
外文關鍵詞:Vanadium redox flow batteryGraphite felt
相關次數:
  • 被引用被引用:0
  • 點閱點閱:520
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
近三十年來,全釩氧化還原液流電池(Vanadium Redox Flow Battery, VRFB)備受矚目,因其具有可深度放電、自放電低、安全性高搭配設計靈活之優點,且可隨著設置場所不同而改變其設計。本論文研究目的針對石墨氈電極材料進行表面改質,其方法利用熱處理以及酸處理之方式,並利用熱重量分析儀、全自動程序溫控化學吸脫附分析儀、場發射掃描式電子顯微鏡、比表面吸分析儀、X射線光電子能譜儀、接觸角量測儀、循環伏安測試、交流阻抗分析以及全電池測試對石墨氈進行探討其表面性質及其電化學性能之影響。
經由熱重分析曲線與程序溫控氧化曲線分析後,可知熱處理對石墨氈在溫度上面有其極限,500 ˚C是在大氣下熱處理之最高溫,而太低溫無法產生熱處理效果。從SEM與BET分析可知,熱處理有助於對表面造成微蝕,配合BET分析可得知,微蝕所造成的微孔有助於提高比表面積,且以500 ˚C下熱處理三小時的比表面積為最高,約為53.06 m2/g。再經由XPS分析發現,經由熱處理後,石墨氈表面之氧化物被清除,且經由酸處理後,在O1s的圖譜上可明顯看出酸處理有助於增加O在表面的含量。在電化學行為上,熱處理後可以降低極化現象,且在酸處理後,更趨於明顯,藉由交流阻抗分析可知,酸處理後的石墨氈在電荷轉移阻抗較單純熱處理後小,搭配半電池性能測結果可推斷處理後之石墨氈有助於增加反應可逆性,經全電池在電流密度為100 mA/cm2充放電後得知,經400 ˚C熱處理兩天及酸處理之效果為最好,其能量效率為63.94 %,且有效電容量為18 AhL-1。
經由以上結果發現,熱處理可以清除石墨氈可增加反應面積並提升能量效率,而在酸處理後可在石墨氈上大幅增加C-OH,由此C-OH鍵結可使活性物質與電極更直接的進行電子轉移並減少固液相間阻抗並提升有效電容量。
In recent years vanadium redox flow battery (VRFB) has received considerable attention because its outstanding features such as safety, flexible design, long cycle life and high reliability. As in other batteries, electrode is the key factor of energy efficiency. The purpose of this study is to investigate the effect of modified graphite felt on the electrochemical performance for vanadium redox flow battery. From the result of thermogravimetric analysis (TGA) and auto catalyst characterization system (TPO), it is found that the best appropriated heat treatment temperature is in the range of 400 to 600°C. The structure, composition, specific surface area, and electrochemical properties of the graphite felt which treated by heat and acid were characterized using scanning electron microscopy (SEM), Nitrogen adsorption-desorption isotherm, X-ray photoelectron spectroscopy (XPS), contact angle, cyclic voltammetry (CV), and charge-discharge test. From the SEM images and specific surface area result, it was found that the surface area of the graphite felt increases after heat treatment. The surface of graphite felt carries more hydrophilic groups, such as –OH after acid treatment. The hydrophilic groups improve the redox reaction of vanadium ions, thereby increase the efficiency of the vanadium redox flow battery. The coulombic, voltage, energy efficiencies, and specific capacity of the graphite felt after heat treatment at 400°C for 2 days and acid treatment respectively are 96.62%, 65.99%, 63.94%, and 18 AhL-1 at 100 mA.
目錄

摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
第1章、 前言 1
1.1 緒論 1
1.2 液流電池 4
第2章、 文獻回顧 5
2.1 液流電池發展歷史 5
2.1.1 The iron-chromium redox system 5
2.1.2 Zinc/bromine redox flow cells 6
2.1.3 All vanadium redox flow battery(VRB) 6
2.1.4 Bromine/polysulphide flow battery 7
2.1.5 Zinc/cerium redox flow cells 7
2.1.6 The vanadium-bromine redox system 8
2.2 全釩氧化還原液流電池工作原理 10
2.3 全釩氧化還原液流電池關鍵材料 12
2.3.1 電解液 14
2.3.2 離子交換膜 15
2.3.3 雙極板 16
2.3.4 電池電極 17
第3章、 研究動機與目的 19
3.1 研究目的 19
第4章、 實驗方法與步驟 21
4.1 實驗器材 21
4.1.1 化學藥品及材料 21
4.1.2 實驗器材及設備 22
4.2 實驗架構 23
4.3 實驗步驟 24
4.3.1 前處理 24
4.3.2 熱處理 24
4.3.3 酸處理 25
4.3.4 電解液製備 26
4.3.5 半電池測試之極片製作與組裝 26
4.4 儀器分析 27
4.4.1 熱重量分析儀(Thermal gravity Analysis, TGA) 27
4.4.2 程序溫控氧化反應(TPO) 27
4.4.3 場發射掃描式電子顯微鏡(FE-SEM) 27
4.4.4 比表面積分析儀(BET) 28
4.4.5 X射線光電子能譜儀(XPS) 28
4.4.6 接觸角量測儀(Contact angle) 28
4.5 電化學性能測試 29
4.5.1 半電池循環伏安測試(Cyclic Voltammetry) 29
4.5.2 交流阻抗分析 29
4.5.3 單電池充放電測試 30
第5章、 結果與討論 31
5.1 石墨氈材料性質分析 31
5.1.1 熱處理對石墨氈性能的影響 31
5.1.2 場發射式電子掃描顯微鏡分析(FE-SEM) 34
5.1.3 比表面積分析(BET) 37
5.1.4 X射線光電子能譜(XPS) 39
5.1.5 接觸角量測 49
5.2 石墨氈電化學性能分析 52
5.2.1 半電池循環伏安測試(Cyclic Voltammetry) 52
5.2.2 交流阻抗分析(A.C. Impedance) 57
5.2.3 單電池充放電測試(Charge-Discharge) 62
第6章、 結論 69
第7章、 參考文獻 71


圖目錄
Figure 2 1 Redox flow systems (a) bromine/polysulphide, (b) vanadium/vanadium, (c) vanadium/bromide, (d) iron/chromium with anionic membrane, (e) iron/chromium with cationic membrane, and (f) zinc/bromide.[9] 9
Figure 2 2 Unit redox flow cell for energy storage[9] 11
Figure 2 3 The single cell structure of all-vanadium redox flow battery.[19] 13
Figure 4 1 石墨氈表面改質流程圖 23
Figure 5 1 Weight loss of the graphite felt at various temperatures. 32
Figure 5 2 Temperature-Programmed Oxidation of the graphite felt in 2% O2+He atmosphere. 33
Figure 5 3 The SEM micrographs of the graphite felt:(a)Untreated, (b)400˚C for 2 days and (c)500˚C for 3 hours. (At 5,000X magnification ). 35
Figure 5 4 The SEM micrographs of the graphite felt:(a)Untreated, (b)400˚C for 2 days and (c)500˚C for 3 hours. (At 20,000X magnification ). 36
Figure 5 5 XPS spectra of the untreated graphite felt:(a) the survey spectra, (b) core level spectra of the C1s region and (c) core level spectra of the O1s region. 40
Figure 5 6 XPS spectra of the graphite felt heat treated at 400˚C for 2 days:(a) the survey spectra, (b) core level spectra of the C1s region and (c) core level spectra of the O1s region. 41
Figure 5 7 XPS spectra of the graphite felt heat treated at 500˚C for 3 hours:(a) the survey spectra, (b) core level spectra of the C1s region and (c) core level spectra of the O1s region. 42
Figure 5 8 XPS spectra of the graphite felt heat treated at 400˚C for 2 days and after Fenton reagent :(a) the survey spectra, (b) core level spectra of the C1s region and (c) core level spectra of the O1s region 43
Figure 5 9 XPS spectra of the graphite felt heat treated at 500˚C for 3 hours and after Fenton reagent:(a) the survey spectra, (b) core level spectra of the C1s region and (c) core level spectra of the O1s region. 44
Figure 5 10 XPS core level spectra of O1s region for the graphite felt heated. 45
Figure 5 11 The contact angle of the graphite felt:(a)Untreated, (b)400˚C for 2 days, (c)500˚C for 3 hours, (d)400˚C for 2 days after Fenton reagent, and (e)500˚C for 3 hours after Fenton reagent. 50
Figure 5 12 The CV curves of the graphite felt (a)untreated, (b)400˚C for 2 days and (c)after Fenton reagent treated recorded at different scan rates in 0.1 M VOSO4 + 20 wt% H2SO4 solution. 53
Figure 5 13 The CV curves of the graphite felt (a)untreated, (b)500˚C for 3 hours and (c)after Fenton reagent treated recorded at different scan rates in 0.1 M VOSO4 + 20 wt% H2SO4 solution. 54
Figure 5 14 The CV curves of the graphite felt recorded at 10 mVs-1 scan rates in 0.1 M VOSO4 + 20 wt% H2SO4 solution. 55
Figure 5 15 Nyquist plot of the graphite felt at the polarization potential of 0.95 V. 58
Figure 5 16 Nyquist plot of the graphite felt treated at the polarization potential of 0.95 V. 59
Figure 5 17 The equivalent circuit of diagram. 60
Figure 5 18 Charge-discharge curves of the graphite felt for untreated at various current densities. 64
Figure 5 19 Charge-discharge curves of the graphite felt (a) 400°C for 2 days and (b) after Feton reagent treated at various current densities. 65
Figure 5 20 Charge-discharge curves of the graphite felt (a) 500°C for 3 hours and (b) after Feton reagent treated at various current densities. 66
Figure 5 21 The specific capacity of graphite at 100 mAcm-2 67

表目錄

Table. 1 1 Comparison of technicalities of different energy storage devices as against the redox flow battery[8] 3
Table. 4 1實驗藥品名稱、化學式及其相關資料 21
Table. 4 2實驗儀器名稱及其相關資料 22
Table. 5 1 Specific surface areas of the graphite felts after different heat treatment. 38
Table. 5 2 General spectra of major elements for different graphite felts peak area percentage. 46
Table. 5 3 General spectra of major elements for different graphite felts peak area percentage 47
Table. 5 4 Curve-fit data of O1s spectra. 48
Table. 5 5 The contact angle of the graphite felt. 51
Table. 5 6 The parameters obtained from the CV curves on the defferent graphite felt elecrodes at 10 mVs-1 scan rates. 56
Table. 5 7 Parameters obtained from fitting the impedance. 61
Table. 5 8 Efficiency values of graphite felt under various current densities. 68
第7章、參考文獻
[1] REN 21, Renewables 2016 global status Report
(http://www.res4africa.org/library/ren-21/)
[2] C. J. Wei, Effect of activated graphite felt on the performance of all-vanadium redox flow batteries, Department of Materials Science and Engineering, Feng Chia University, 2012.
[3] J. H. Lee, Electrochemical study of the graphite/glassy carbon composite electrodes in all-vanadium redox flow cell, Department of Chemistry, Fu Jen Catholic University, 2008.
[4] S. M. A. Price, S. Bartltey, G. Cooley, A novel approach to utility scale energy storage, Power Engineering Journal, 13, 121-222, 1999.
[5] C. Ding, H. Zhang, X. Li, T. Liu, F. Xing, Vanadium flow battery for energy storage: prospects and challenges, Journal of Physical Chemistry Letters, 4, 1281–1294, 2013.
[6] A. Cunha, J. Martins, N. Rodrigues, F.P. Brito, Vanadium redox flow batteries: a technology review, International Journal of Energy Research, 39, 889-918, 2015.
[7] X. F. Xie, C.C. Ma, J. C. Chiang, M. C. Hsiao, S. H. Yang, L. H. Chang, New energy storage battery - principles and development of vanadium redox flow battery, Chemistry, 70, 237-246, 2012.
[8] M. Skyllas-Kazacos, M. H. Chakrabarti, S. A. Hajimolana, F. S. Mjalli, M. Saleemd, Progress in flow battery research and development, Journal of The Electrochemical Society, 158(8), 1-25, 2011.
[9] A. F. F. C. Ponce de León, J. González-García, D. A. Szánto, F. C. Walsh, Redox flow cells for energy conversion, Journal Power Sources, 160, 716-732, 2006.
[10] M. Q. Zhang, M. Moore, J. S. Watson, T. A. Zawodzinski and R. M. Counce, Capital cost sensitivity analysis of an all-vanadium redox-flow Battery, Journal of The Electrochemical Society, 159, 1183-1188, 2012.
[11] L. Yue, W. S. Li, F. Q. Sun, L. Z. Zhao, L. D. Xing, Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery, Carbon, 48, 3079-3090, 2010.
[12] M. R. M. Skyllas-Kazacos, R. Robins, All-vanadium redox battery, U.S. Patent 4,786,567 A, 1988.
[13] M. S.-K. B. Sun, Chemical modification of graphite electrode material for vanadium redox flow battery application-part II. Acid treatments, Electrochimica Acta, 37, 2459-2465, 1992.
[14] L.H. Thaller, Redox flow cell energy storage systems, NASA TM-79143, DOE/NASA/1002-79/3, 1979.
[15] L. Swette, V. Jalan, Development of electrodes for the NASA iron/chromium redox system and factors affecting their performance, NASA CR-174724, DOE/NASA/0262-1, 1984.
[16] R. F. Gahn, N. H. Hagedorn, J. A. Johnson, Cycling performance of the iron chromium redox energy storage system, NASA TM-87034, NASA, Dept.of Energy, US, 1985.
[17] P. Morrissey, Regenesys: a new energy storage technology, International Journal of Ambient Energy, 21 (4) 213, 2000.
[18] M. Skyllas-Kazacos, A. Mousa, M. Kazakos, Metal bromide redox flow cell, PCT Application, PCT/GB2003/001757, 2003.
[19] M. Skyllas-Kazacos, H. Prifti, A. Parasuraman, S. Winardi, T. M. Lim Membranes for redox flow battery applications, Membranes, 2, 275-306, 2012.
[20] U. S. D. O. Energy, Redox flow cell development and demonstration project, NASA TM-790671979.
[21] M. Skyllas-Kazacos, C. Menictas, M. Kazacos, Thermal stability of concentrated V (V) electrolytes in the vanadium redox Cell, Journal of The Electrochemical Society, 143, 86-88, 1996.
[22] M. J. Watt-Smith, H. Al-Fetlawi, P. Ridley, R. G. A. Wills, A. A. Shah, F. C. Walsh, The importance of key operational variables and electrolyte monitoring to the performance of an all vanadium redox flow battery, Journal of Chemical Technology and Biotechnology, 88, 126-138, 2013.
[23] C. W. Monroe, A. A. Shinkle, A. E.S. Sleightholme, L. D. Griffith,L. T. Thompson, Degradation mechanisms in the non-aqueous vanadium acetylacetonate redox flow battery, Journal of Power Sources, 206, 490-496, 2012.
[24] J. Xi, Z. Wu, X. Qiu, L. Chen, Nafion/SiO2 Hybrid membrane for vanadium flow battery, Journal of Power Sources, 166, 531-536, 2007.
[25] M. H. Chakrabarti, N. P. Brandon, S. A. Hajimolana, F.Tariq, V. Yufit, M. A. Hashim, M. A. Hussain, C. T. J. Low, P. V. Aravind, Application of carbon materials in redox flow batteries, Journal of Power Sources, 253, 150-166, 2014.
[26] A. Parasuraman, T. M. Lim, C. Menictas, M. Skyllas-Kazacos, Review of material research and development for vanadium flow battery applications, Electrochimica Acta, 101, 27-40, 2013.
[27] K. J. Kim, M. S. Park, Y. J. Kim, J. H. Kim, S. X. Dou, M. Skyllas-Kazacos, A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries, Journal of Materials Chemistry A, 3, 16913-16933, 2015.
[28] B. Sun, M. Skyllas-Kazacos, Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment, Electrochimica Acta, 37, 1253-1260, 1992.
[29] M. Gattrell, J. Qian, C. Stewart, P. Graham, B. MacDougall, The electrochemical reduction of VO2+ in acidic solution at high overpotentials, Electrochimica Acta, 51, 395-407, 2005.
[30] C. Gao, N. F. Wang, S. Peng, S. Q. Liu, Y. Lei, X. X. Liang, S. S. Zeng, H. F. Zi, Influence of Fenton’s reagent treatment on electrochemical properties of graphite felt for all vanadium redox flow battery, Electrochimica Acta, 88, 193-202,2013.
[31] X. Wu, H. Xu, Y. Shen, P. Xu, L. Lu, J. Fu, H. Zhao, Treatment of graphite felt by modified Hummers method for the positive electrode of vanadium redox flow battery, Electrochimica Acta, 138, 264-269, 2014.
[32] X. Qiu, J. Xi, W. Zhang, Z. Li, H. Zhou, L. Liu, Z. Wua, Electrochemical activation of graphite felt electrode for VO2+/VO2+ redox couple application, Electrochimica Acta, 89, 429-435, 2013.
[33] M. S. Park, K. J. Kim, Y. J. Kim, J. H. Kim, The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries, Materials Chemistry and Physics, 131, 547-553, 2011.
[34] O. O. Park, J. J. Park, J. H. Park, J. H. Yang, Highly porous graphenated graphite felt electrodes with catalytic defects for high-performance vanadium redox flow batteries produced via NiO/Ni redox reactions, Carbon, 110, 17-26, 2016.
[35] Z. Zhang, J. Xi, H. Zhou, X. Qiu, KOH etched graphite felt with improved wettability and activity for vanadium flow batteries, Electrochimica Acta, 218, 15-23, 2016.
[36] Z. González, A. Sánchez, C. Blanco, M. Granda, R. Menéndez, R. Santamaría, Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery, Electrochem. Commun, 13, 1379-1382, 2011.
[37] B. Li, M. Gu, Z. Nie, Y. Shao, Q. Luo, X. Wei, X. Li, J. Xiao, C. Wang, V. Sprenkle, W. Wang, Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery, Nano Letters, 13, 1330-1335, 2013.
[38] D. J. Suárez, Z. Gonzalez, C. Blanco, M. Granda, R. Menendez, R. Santamaria, Graphite felt modified with bismuth nanoparticles as negative electrode in a vanadium redox flow battery, ChemSusChem, 7, 914-918, 2014.
[39] T. Liu, X. Li, H. Nie, C. Xu, H. Zhang, Investigation on the effect of catalyst on the electrochemical performance of carbon felt and graphite felt for vanadium flow batteries, Journal of Power Sources, 286, 73-81, 2015.
[40]G. Wei, X. Fan, J. Liu, C. Yan, Electrospun carbon nanofibers/electrocatalyst hybrids as asymmetric electrodes for vanadium redox flow battery, Journal of Power Sources, 281,1-6, 2015.
[41] C. A. Yao, H. M. Zhang, T. Liu, X. F. Li, Z. H. Liu, Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery, Journal of Power Sources, 218, 455-461, 2012.
[42] Y. Shen, H. Xu, P. Xu, X. Wu, Y. Dong, L. Lu, Electrochemical catalytic activity of tungsten trioxide- modified graphite felt toward VO2+/VO2+ redox reaction, Electrochimica Acta, 132, 37-41, 2014.
[43] D. M. Kabtamu, J. Y. Chen, Y. C. Chang, C. H. Wang, Electrocatalytic activity of Nb-doped hexagonal WO3 nanowire-modified graphite felt as a positive electrode for vanadium redox flow batteries, Journal of Materials Chemistry A, 4, 11472, 2016.
[44] X. Xie, W. Mu, X. Li, H. Wei, Y. Jian, Q. Yu, R. Zhang, K. Lv, H. Tang, S. Luo, Incorporation of tantalum ions enhances the electrocatalytic activity of hexagonal WO3 nanowires for hydrogen evolution reaction, Electrochimica Acta, 134, 201-208, 2014.
[45] K. J. Kim, M. S. Park, J. H. Kim, U. Hwang, N. J. Lee, G. Jeong, Y. J. Kim, Novel catalytic effects of Mn3O4 for all vanadium redox flow batteries, Chemical Communications, 48, 5455-5457, 2012.
[46] Z. He, L. Dai, S. Liu, L. Wang, C. Li, Mn3O4 anchored on carbon nanotubes as an electrode reaction catalyst of V(IV)/V(V) couple for vanadium redox flow batteries, Electrochimica Acta, 176, 1434-1440, 2015.
[47]A. Ejigu, M. Edwards, D. A. Walsh, Synergistic Catalyst−support interactions in a graphene−Mn3O4 electrocatalyst for vanadium redox flow batteries, ACS Catalysis, 5 (12), 7122-7130, 2015.
[48] B. Li, M. Gu, Z. Nie, X. Wei, C. Wang, V. Sprenkle, W. Wang, Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery, Nano Letters, 14, 158-165, 2014.
[49]X. X. Wu, H. F. Xu, L. Lu, H. Zhao, J. Fu, Y. Shen, P. C. Xu, Y. M. Dong, PbO2-modified graphite felt as the positive electrode for an all-vanadium redox flow battery, Journal of Power Sources, 250, 274-278, 2014.
[50] H. Zhou, Y. Shen, J. Xi, X. Qiu, L. Chen, ZrO2-nanoparticle-modified graphite felt: bifunctional effects on vanadium flow batteries, ACS Applied Materials & Interfaces, 8 (24), 15369-15378, 2016.
[51]H. Zhou, J. G. Xi, Z. H. Li, Z. G. Zhang, L. H. Yu, L. Liu, X. P. Qiu, L. Q. Chen, CeO2 embedded electrospun carbon nanofibers as the advanced electrode with high effective surface area for vanadium flow battery, RSC Advances 4, 61912-61918, 2014.
[52]W. H. Wang, X. D. Wang, Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery, Electrochimica Acta, 52, 6755-6762, 2007.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊