中文部分
1.王智弘(2002)。應用資料探勘技術分析及預測銀行顧客貢獻度之研究。國立中正大學資訊工程研究所未出版碩士論文,嘉義縣。2.王濟川、郭志剛(2003)。Logistic 迴歸模型-方法及應用。台北市:五南圖書出版股份有限公司。
3.李宜致(2008)。資料探勘手術後減重效果分類模式之建構。輔仁大學商學研究所未出版博士論文,新北市。4.林盟凱(2004)。信用評等時間序列資料分析-結合效能提升技術之類神經網路分類模型。世新大學資訊管理學系未出版碩士論文,台北市。5.林蔚蒲(2013)。復健前後的中風病人各項量表的比較分析。國立中山大學機械與機電工程學系研究所未出版碩士論文,高雄市。6.張慶光(2006)。以資料探勘之決策樹方法建立小額信貸評分模型研究。國立台灣大學商學組未出版碩士論文,台北市。7.陳怡妃(2003)。資料探勘顧客保留分類模式之建構-以健康休閒俱樂部為例。天主教輔仁大學管理學研究所未出版碩士論文,新北市。8.陳順宇(2004)。多變數分析( 3版)。台北市:華泰文化事業股份有限公司。
9.彭慧雯(2001)。建構信用卡資料挖礦架構及其實證研究。國立台北科技大學生產系統工程與管理研究所未出版碩士論文,台北市。10.温堯欽(2013)。網路入侵與攻擊偵測之實作研究-使用最佳專機分類法。國立聯合大學資訊管理學系碩士班未出版碩士論文,苗栗縣。11.趙李英記(1999)。運用集成學習分類於白血病腫瘤基因之研究。中國文化大學資訊管理學系未出版碩士論文,新北市。12.劉書汎(2009)。信用卡違約風險評估模型-應用粗糙集與因素分析。朝陽科技大學財務金融系碩士班未出版碩士論文,台中市。13.蔡佩芬(2012)。以兩種資料探勘方式預測透析中低血壓事件:比較支援向量機與羅吉斯迴歸法。中臺科技大學健康產業管理研究所未出版碩士論文,台中市。14.蔡博安(2012)。應用支援向量機與集成學習法預測工程專案績效。國立高雄應用科技大學土木工程與防災科技研究所未出版碩士論文,高雄市。15.謝弘一(2011)。資料探勘於信用卡顧客行為評分模型之建構。天主教輔仁大學商學研究所未出版博士論文,新北市。16.謝邦昌(2006) 。資料採礦與商業智慧。台北市:鼎茂圖書出版股份有限公司。
網路部份
1.中時電子報(2013),取自於
http://money.chinatimes.com/news/news-content.aspx?id=20131108000043&cid=1210
英文部分
1.Akgun, A. (2012). A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey. Landslides, 9(1), 93-106.
2.Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, 23(4), 589-609.
3.Berkson, J. (1944). Application of the Logistic function to bioassay. Journal of the American Statistical Association, 37, 357-365.
4.Chen, F. L.,& Ou, T. Y. (2011). Sales forecasting system based on Gray extreme learning machine with Taguchi method in retail industry. Expert systems with Applications, 38(3), 1336-1345.
5.Chen, W. H., & Shih, J. Y. (2006). A study of Taiwan’s issuer credit rating systems using support vector machines. Expert Systems with Applications, 30(3), 427-435.
6.Clayton, G. E., & Cate, T. (2004). Predicting MBA no-shows and graduation success with discriminant analysis. International Advances in Economic Research, 10(3), 235-243.
7.Crook, J. N., Edelman, D. B., & Thomas, L. C. (2007). Recent developments in consumer credit risk assessment. European Journal of Operational Research, 183, 1447-1465.
8.Dietterich, T. G. (Ed.). (2000). Ensemble methods in machine learning. NY: Springer.
9.Fisher, R. A. (1938). The statistical utilization of multiple measurements. Annals of Eugenics, 8, 376-386.
10.Hagan, M. T., Demuth, H. B., & Beale, M. H. (1996). Neural network design. Boston: Pws.
11.Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE transactions on pattern analysis and machine intelligence, 12, 993-1001.
12.Hosmer, D. W., & Lemeshow, S. (1989). Applied logistic regression. NY: John Wiley & Sons, Inc.
13.Hsieh, N. C., & Huang, L. P. (2010). A data driven ensemble classifier for credit scoring analysis. Expert Systems with Applications, 28(4), 655-665.
14.Huang, C. L., Chen, M. C., & Wang, C. J. (2007). Credit scoring with a data mining approach based on support vector machines. Expert systems with Applications, 33(4), 847-856.
15.Huang, G. B., Ding, X. J., & Zhou, H. M. (2010). Optimization method based extreme learning machine for classification. Neurocomputing, 74(1-3), 144-163.
16.Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: theory and applications, Neurocomputing, 70(1-3), 489-501.
17.Huang, Z., Chen, H., Hsu, C. J., Chen, W.-H., & Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: A market comparative study. Decision Support Systems, 37(4), 543-558.
18.Hus, C.-W., Chang, C.-C., & Lin, C.-J. (Eds.). (2003). A practical guide to support vector classification. Taipei: National Taiwan University.
19.Johnson, R. A., & Wichern, D. W. (Eds.). (1992). Applied multivariate statistical analysis. NJ: Prentice-Hall.
20.Karra, A., & Krichene, A. (2012). Credit–Risk Assessment Using Support Vectors Machine and Multilayer Neural Network Models: A Comparative Study Case of a Tunisian Bank. Journal of Accounting and Management Information Systems, 11(4), 587-620.
21.Landis, J., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(Mar.), 159-174.
22.Lee, G., Sung, T. K., & Chang, N. (1999). Dynamics of modeling in data mining: Interpretive approach to bankruptcy prediction. Journal of Management Information Systems, 16(1), 63-85.
23.Lee, H., Jo, H., & Han, I. (1997). Bankruptcy prediction using case-based reasoning, neural networks, and discriminant analysis. Expert Systems with Applications, 13(2), 97-108.
24.Li, S.-T., Shiue, W., & Huang, M.-H. (2006). The evaluation of consumer loans using support vector machines. Expert Systems with Applications, 30(4), 772-782.
25.Luo, S.-T., Cheng, B.-W., & Hsieh, C.-H.(2009). Prediction model building with clustering-launched classification and support vector machines in credit scoring. Expert Systems with Applications, 36(4), 7562-7566.
26.McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.
27.Mileris, R. (2010). Estimation of loan applicants default probability applying discriminant analysis and simple Bayesian classifier. Economics & Management, 15, 1078-1084.
28.Nagadevara, V. (2010). Hybrid models and error weighting for prediction customer churn in telecom industry. Review of Business Research, 10(1), 35-45.
29.Odum, E. P. (1971). Fundamental of ecology. Phidadelphia: W. B. Saunders Co.
30.Osmar, R. Z. (1999). Resource and knowledge discovery from the Internet and multimedia repositories. Unpublished doctoral dissertation, Simon Fraser University, Canada.
31.Polikar, R. (2006). Ensemble based systems in decision making. Circuits and Systems Magazine, IEEE, 6(3), 21- 45.
32.Schölkopf, B., & Smola A. J. (2002). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MA: MIT Press.
33.Shin, K.-S., Lee, T.S., & Kim, H.-j (2005). An Application of Support Vector Machines in Bankruptcy Prediction Model, Expert Systems with Applications, 28, 127-135.
34.Upadhyay, A., Bandyopadhyay, G., & Dutta, A. (2012). Forecasting Stock Performance in Indian Market using Multinomial Logistic Regression. Journal of Business Studies Quarterly, 3(3), 135-149.
35.Vapnik, V. N. (Ed.). (2000). The Nature of Statistical Learning Theory. New York: Springer.
36.Vapnik, V., Golowich, S. E., & Smola, A. (1997). Support vector method for function approximation, regression estimation, and signal processing. Advances in neural information processing systems, 281-287.
37.Verhulst, P. E. (1838). Notice sur la loi que la population suit dans son accroissement. Correspondence Mathematique et. Physique, 10, 113-121.
38.Wang, G., Hao, J., Ma, J., & Jiang, H. (2011). A comparative assessment of ensemble learning for credit scoring. Expert systems with applications, 38(1), 223-230.
39.Wang, Y. G., Cao, F. L., & Yuan, Y. B. (2011). A study on effectiveness of extreme learning machine. Neurocomputing, 74(16), 2483-2490.
40.West, D. (2000). Neural network credit scoring models. Computers and Operations Research, 27(11-12), 131-1152.
41.Windeatt, T., & Ardeshir, G. (2004). Decision tree simplification for classifier ensembles. International Journal of Pattern Recognition and Artificial Intelligence, 18(05), 749-776.
42.Yu, L., Yue, W., Wang, S., & Lai, K. K. (2010). Support vector machine based multiagent ensemble learning for credit risk evaluation. Expert Systems with Applications, 37(2), 1351-1360.
43.Yuan, Y. B., Wang, Y. G., & Cao, F. L. (2011). Optimization approximation solution for regression problem based on extreme learning machine. Neurocomputing, 74(16), 2475-2482.
44.Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks: The state of the Art. International Journal of Forecasting, 14, 35-62.
45.Zoratti, S., & Gallagher, L. (2013). Precision Marketing-Minimizing revenue through relevance. Taipei: Kogan Page Ltd.