跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.102) 您好!臺灣時間:2025/12/04 07:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林維哲
研究生(外文):Lin-Wei Che
論文名稱:具功率因數校正之智慧型省能乾衣機
論文名稱(外文):Intelligent energy-saving clothes dryerwith power factor correction
指導教授:謝聰烈
指導教授(外文):Tsung-Lieh Hsieh
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:142
中文關鍵詞:Boost轉換器功率因數校正狀態空間平均法直流無刷馬達IPM 智慧型功率模組
外文關鍵詞:Boost converterpower factor correctionState-space averaged modelBrushless DC motorIPM intelligent power module
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1041
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要以具功率因數校正的智慧型省能乾衣機為核心,設計升壓型功率因數校正轉換器、直流無刷馬達速度控制驅動系統及溫度控制驅動系統。在電源側以升壓型轉換器為架構,採用平均電流控制法,完成主動式功率校正目的,符合國際電流諧波規範。而在烘乾技術方面,提出一嶄新的省能專利自動烘乾停機控制方法,主要係利用微處理機偵測其排氣口溫度梯度變化估測衣服相對溼度,控制加熱器的開關及馬達速度的狀態,藉由排氣口溫度梯度曲線變平緩時,表示衣物已烘乾,乾衣機便會自動關閉加熱器,結束烘衣步驟,接著滾筒與風扇將以高速運轉抽入機外冷空氣,達到快速冷卻衣物的防皺及除靜電功能,當排氣溫度接近外部溫度時將會完全停機,如此,衣物取出時不燙手且降低靜電產生,確實達到乾衣、省錢與節能減碳之成效,並具人性化及便利性,只需One Touch按下按鈕,無須像傳統乾衣機需預估衣服重量及烘依時間預估設定等其他繁瑣的設定,也無須花時間在旁邊等待乾衣機停機,更無須擔心時間設定不當時造成過度烘乾及不乾的情形發生,本全數位專利烘乾驅動控制系統節能效率高於市售節能乾衣機種約20%以上。


The core of this paper is based on intelligent energy-saving clothes dryer with power factor correction. And design the boost power factor correction converters, BLDC motor speed control drive system and temperature control of the drive system.
The power supply uses the boost converter structure and adopts average current control method to complete the active power calibration purposes. It meets the regulations of international current harmonics wave.
In drying technology, a new energy-saving automatic drying control methods improved from original patent is designed.The microprocessor is used to detect the exhaust temperature gradient for controlling the shutdown of the heater and the motor speed. When the small change of the exhaust temperature gradient is reached, it represents that no more water inside clothes can be evaporated and the clothes has been dry enough, the heater is automatically shut down and steps to end the dryer. At this moment, the motor, which is used to drive the drum and fan, keeps operating, and the fan speed is controlled to drive more the cooler outside air to cool down hot clothes faster. It can also obtain less-wrinkle of clothes and less static electricity on clothes. While the exhaust temperature is close to that of outside air, the dryer will be completely shut down, the clothes will be less-wrinkle because of fast and enough cooling. Thus, the user will not feel hurt taking clothes even right after the dryer stop.And this dryer can obtain energy-saving and carbon-reducing effect,and the above user friendly designs make user more convenient using.While this dryer is used, it does only need to one-touch on the power and without any set-up process. More than that, the user does not worry the wrong time setup resulting in over drying or not-enough drying. It is proved from experiments that the energy-saving effect of this innovative method is 20% high than those of other dryers.


中文摘要 I
英文摘要 II
誌謝 III
目錄 V
圖目錄 IX
表目錄 XV
第一章 緒論 1
1.1 研究動機與目的 1
1.2 相關文獻回顧 5
1.2.1乾衣系統部分文獻回顧 5
1.2.2功因校正部分文獻回顧 8
1.2.3馬達驅動部分文獻回顧 9
1.3 研究成果 10
1.4 論文大綱 11
第二章 乾衣機原理概述 13
2.1 系統架構 13
2.2 乾衣原理之分析 13
2.3 不同外在空氣條件下的除濕能力比較 17
2.4 相對溼度不可行之原因 19
2.5 乾衣機滾筒構造分析 20
2.6 防皺、除靜電之原理 22
第三章 Boost功因校正整流器分析 23
3.1 功率因數介紹 23
3.1.1線性負載 25
3.1.2非線性負載 26
3.2 功率因數校正電路之演變 28
3.2.1 被動式功因校正電路 29
3.2.2 主動式功因校正電路 31
3.3 Boost功因校正整流器電路分析 36
3.4 內迴路電流控制 39
3.4.1內迴路電流控制分析 39
3.4.2 Boost功因校正整流器電路模式化 40
3.5 外迴路電壓控制 48
3.5.1 外迴路電壓控制分析 48
3.5.2 前饋控制 51
3.5.3 電壓控制模式化 53
第四章 直流無刷馬達相關技術分析 58
4.1 直流無刷馬達之特性 58
4.2 霍爾感測器介紹 59
4.3 直流無刷馬達驅動之轉動磁場原理 60
4.4 直流無刷馬達動態方程式 61
4.5 直流無刷馬達驅動電路換相原理 63
4.5.1 120度矩形波驅動方式 64
4.5.2 120度驅動器動作原理分析 70
第五章 系統硬體實作規劃設計與分析 73
5.1 乾衣機硬體架構 73
5.1.1 dsPIC30F4011晶片功能簡介 74
5.1.2 電源電路系統架構 77
5.1.3 溫度取樣電路 78
5.1.4 交流隔離電路 79
5.2 高功因Boost整流器硬體架構 80
5.2.1 功因校正控制IC UC3854 80
5.2.2 高功因Boost整流器功率級電路設計 82
5.2.3 電流感測 85
5.2.4 乘/除法器輸入信號設定 86
5.2.5 切換頻率設定 87
5.2.6 內迴路電流控制器 87
5.2.7 外迴路電壓控制器 90
5.3 直流無刷馬達驅動硬體架構 92
5.3.1 三相8極直流無刷馬達 93
5.3.2 介面電路 94
5.3.3 轉子位置偵測電路 95
5.3.4 主電路 96
5.3.5 IPM智慧型功率模組 96
第六章 系統軟體實作規劃設計與分析 101
6.1 乾衣機軟體架構 101
6.1.1 乾衣控制精確設計 104
6.1.2 嶄新自動停機特性曲線 104
6.2 直流無刷馬達軟體架構 106
第七章 實作結果 109
7.1高功因Boost整流器實作結果 109
7.1.1高功因特性與穩壓特性 110
7.1.2不同輸入電壓變動之穩壓性能 114
7.1.3不同負載變動之穩壓性能 115
7.1.4 FFT頻譜與電流諧波 116
7.1.5高功因Boost整流器之轉換效率性能測試 119
7.2直流無刷馬達速度控制驅動系統實作結果 120
7.2.1霍爾感測器訊號 120
7.2.2直流無刷馬達驅動訊號與三相線電壓 121
7.3具功率因數校正之智慧型省能乾衣機實作結果 124
7.3.1實驗測試方法 124
7.3.2乾衣機實驗步驟說明 127
7.3.3實作數據 128
參考文獻 136


[1]Electromagnetic Compatibility (EMC). Limits for Harmonic Current Emissions, IEC 61000-3-2, Switzerland, 2001.
[2]行政院環境保護署,2002,2002國家通訊UNFCCC National Communication of the Republic of China (Taiwan),行政院環境保護署,台北市。
[3]經濟部,「全國能源會議會議結論具體行動方案」,民國88 年8 月。
[4]經濟部,「能源政策白皮書」,民國87 年。
[5]崑山科技大學,「智慧型省能高低溫乾衣機技術手冊」,民國98年2月。
[6]J. Sebastian, M. Jaureguizar and J. Uceda, “An Overview of Power Factor Correction in Single Phase Off-Line Power Supply System,” IEEE IECON, pp. 1688-1693, 1994.
[7]O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single Phase Power Factor Correction: A Survey,” IEEE Transactions Power Electronics, Vol. 18, No. 3, pp. 749-755, 2003.
[8]D. S. L. Simonetti, J. Sebastian and J. Uceda, “The Discontinuous Conduction Mode Sepic and Ćuk Power Factor Preregulators: Analysis and Design,” IEEE Transactions Industrial Electronics, Vol. 44, No. 5, pp. 630-637, 1997.
[9]H. Wei and I. Batarseh, “Comparison of Basic Converter Topologies for Power Factor Correction,” IEEE PESC, pp. 348-353, 1998.
[10]R. Redl, “Reducing Distortion in Boost Rectifiers with Automatic Control,” IEEE APEC, pp. 74-80, 1997.
[11]R. Erikson and M. Madigan, “Design of A Simple High-Power-Factor Rectifier Based on The Flyback Converter,” IEEE APEC, pp. 792-801, 1990.
[12]J. L. Lin, S. P. Yang and P. W Lin, “Small-Signal and Controller Design for an Isolated Zeta Converter with High Power Factor Correction,” Electric Power Systems Research, Vol. 76, pp. 67-76, 2005.
[13]林保偉,基本電力轉換器功因校正能力性能分析與隔離式Zeta電力轉換器之模式推導及控制器設計,碩士論文,國立成功大學工程科學系,2002。
[14]梁從主、陳建富、吳登和、陳奉般、曾國鏡,單級高功因充電器之研究,電子月刊,第七卷,第二期,第106-119頁,2001。
[15]J. Bazinet and J. A. O’connor, “Analysis and Design of A Zero Voltage Transition Power Factor Correction Circuit,” IEEE APEC, pp. 591-597, 1994.
[16]J. Rajagopalan, F. C. Lee and P. Nora, “A Generalized Technique for Derivation of Average Current Mode Control Laws for Power Factor Correction Without Input Voltage Sensing,” IEEE Transactions Industry Applications, Vol. 26, No. 5, pp. 881-885, 1990.
[17]L. Dixon, “Average Current Mode Control of Switching Power Supplies,” Unitrode Power Supply Design Seminar, pp. 5.1-5.4, 1990.
[18]D. Maksimovic, “Design of The Clamped Current High-Power-Factor Boost Rectifier,” IEEE APEC, pp. 584-590, 1994.
[19]J. P. Gegner and C. Q. Lee, “Linear Peak Current Mode Control: A Simple Active Power Factor Correction Control Technique for Continuous Conduction Mode,” IEEE PESC, pp. 196-202, 1996.
[20]R. Redl and B. Erisman, “Reducing Distortion in Peak Current Controlled Boost Power Factor Correctors,” IEEE APEC, pp. 576-583, 1994.
[21]C. Zhou, R. B. Ridley and F. C. Lee, “Design and Analysis of A Hysteretic Boost Power Factor Correction Circuit,” IEEE PESC, pp. 800-807, 1990.
[22]J. Spangler and A. Behera, “A Comparison Between Hysteretic and Fixed Frequency Boost Converter Used for Power Factor Correction,” IEEE APEC, pp. 281-286, 1993.
[23]J. Lai and D. Chen, “Design Considerations for Power Factor Correction Boost Converter Operating at The Boundary of Continuous Conduction Mode and Discontinuous Conduction Mode,” IEEE APEC, pp. 267-273, 1993.
[24]M. Dawande and G. Dubey, “Programmable Input Power Factor Correction Method for Switch Mode Rectifiers,” IEEE APEC, pp. 274-280, 1993.
[25]Z. M. Jovanovic, “Design Trade-Offs in Continuous Current-Mode Controlled Boost Power Factor Correction Circuits,” HFPC, pp. 209-220, 1992.
[26]K. E. Addoweesh, W. Shepherd and L. N. Hulley, “Induction Motor Speed Control Using a Microprocessor-Based PWM Inverter,” IEEE Transactions on Industrial Electronics, Vol 36, No. 4, Nov. pp. 516-522, 1989.
[27]J. Richardson and O. T. Kukrer, “Implementation of a PWM Regular sampling Strategy for AC Drives,” IEEE Transactions on Power Electronics, Vol 6, No. 4, Oct. pp. 645-655, 1991.
[28]A. Maamoun and M. M. Ahmed, “Microprocessor Control System for PWM IGBT Inverter Feeding Three-Phase Inductor,” IEEE Proceedings of International Conference on Industrial Electronics, Control, and Instrumentation, Vol. 2, 6-10, Nov. pp. 1354-1359, 1995.
[29]A. Khoei and Kh. Hadidi, “Microprocessor Based Closed-Loop Speed Control System for DC Motor Using Power MOSFET,” IEEE Proceedings of the Third International Conference on Electronics, Circuits, and Systems, Vol. 2, 13-16 Oct. pp. 1274-1250,1996.
[30]P. K. Nandam and P. C. Sen,"Analog and Digital Speed Control of DC Drive Using Proportional-Integral and Integral-Proportional Control Techniques," IEEE Trans. Ind. Elect. Vol. IE-34,no. 2, May 1987.
[31]S. R. Bowes, “Simple Microprocessor Implementation of New Regular Sampled Harmonic Elimination PWM Techniques,” IEEE Transactions on Industry Applications, Vol 28, Jan./Feb. pp. 89-95,1992.
[32]W. K. Ho, C. C. Hang and J. H. Zhou, “Performance and Gain and Phase Margins of Well-Known PI Tuning Formulas” IEEE Transactions on Control System Technology, Vol. 3, June. pp.245-248,1995.
[33]洪振傑,“切換式磁阻馬達驅動系統之強健速度控制設計與實現”,崑山科技大學電機工程系,碩士論文,92年6月。
[34]莊子賢,“單晶片微控器驅控四相開關磁阻馬達”,2003第二屆台灣電力電子研討會,彰化師範大學,彰化,第226-230頁,92年9月19日。
[35]Hongwen Wang, Chaofang Hu, Shaoyuan Li, Gungliang Han“Design and Application of Fuzzy Controller With PI Regulator Inposition Control System ,” IEEE Intelligent Control and Automation , Proceedings of the 4th World Congress on,vol 3 pp2537-2540,2002.
[36]曾百由,dsPIC數位訊號控制器原理與應用,宏友圖書,2007。
[37]楊正光,“產業用電節能方法---功率因數之改善”,台灣大電力研究試驗中心
[38]洪志泰,以數位信號處理為控制單元之升壓型高功因電力轉換器之研製,碩士論文,國立成功大學工程科學系,2008。
[39]R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Kluwer Academic Publishers, Second Edition,2001.
[40]R. D. Middlebrook and S. Cuk, “A General Unified Approacbh to Modelling Switching-Converter Power Stages,” IEEE PESC,pp. 18-34, 1976.
[41]R. Redl. “Averaged Small-Signal Analysis of The Boost Power Factor Correction Circuit, ” VPEC Seminar Proceedings , pp.108-120, 1989.
[42]J. L. Lin, C. Y. Chen and Y. K. Wang, “AC/DC Convertor Analysis Based on LFR Model,” Proceedings of Taiwan Power Electronics Conference, pp.1015-1020,2006 .
[43]陳建仰,嶄新單級高功因對角半橋型返馳式電力轉換器之LFR動態模式分析與設計,碩士論文,國立成功大學工程科學系,2008。
[44]陳建榮,以返馳式轉換器為基礎之高功因整流器研製,碩士論文,崑山科技大學電機工程系,2004。
[45]Chadderton, D.V., 1997. Air conditioning: a practical introduction, second edition, Taylor and Francis, 37-48.
[46]Jones, W.P., Jones, W.P., 2005. Air conditioning engineering, fifth edition, 38-71
[47]Abbott, M.M., Van Ness, H.G., 1989. Schaum''s outline of theory and problems of thermodynamics, second edition, McGraw Hill, 132-150.
[48]O''Connell, J.P., Haile, J.M., 2005. Thermodynamics: fundamentals for applications. Cambridge University press, 120-174.
[49]張育源,”無刷直流馬達無感測器驅動系統之研製”,國立中央大學,碩士論文,91 年6月。
[50]吳南億,”以數位信號處理器為基礎之電動機車無刷馬達驅動器”,中山大學,碩士論文,90年7月。
[51]許溢适編著,劉昌煥校訂,”電機控制與電力電子:AC是服系統的理論與設計實務”, 文笙書局,95年2月25日6版。
[52]沈金鐘,PID控制器:理論、調整與實現,滄海書局,90年8月出版
[53]張榮芳,“電力電子實習設備之研製”,中華民國第二十四屆電力工程研討會,崑山科技大學,台南,第2041-2046頁,92年11月。
[54]許溢适編著,劉昌煥校訂,”電機控制與電力電子:AC是服系統的理論與設計實務”, 文笙書局,95年2月25日6版。
[55]張育源,”無刷直流馬達無感測器驅動系統之研製”,國立中央大學,碩士論文,91 年6月。
[56]梁從主、陳建富、吳登和、陳奉般、曾國鏡,單級高功因充電器之研究,電子月刊,第七卷,第二期,第106-119頁,2001。
[57]P. C. Todd ,“UC3854 Controlled Power Factor Correction Circuit Design,” Texas Instruments, 1999, http://focus.ti.com/lit/an/slua144/slua144.pdf.
[58]吳仁杰,”數位訊號處理器與感應電動機驅動系統之實現”,正修科技大學機電工程研究所,碩士論文,九十五年六月。
[59]M.Seo, “DIP-IPM V3.5 Application Note” Mitsubishi Electric Corporation Power Device Works,1,Jul,2005.
[60]施炳坤,”無刷永磁馬達驅動系統之研製”,逢甲大學,碩士論文,94 年6月。
[61]林豐文,“直流無刷馬達驅動系統於變動負載的設計與實現”,崑山科技大學電機工程系,碩士論文,97年7月。
[62]鄭永昇,“類比及數位控制之昇壓型功率因數校正整流器研製”,崑山科技大學電機工程系,碩士論文,97年7月。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊