跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 09:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝碩任
研究生(外文):Shuo-Ren Xie
論文名稱:磨床結構之動態性能評價
論文名稱(外文):The Evaluation of The Grinder''s Dynamic Properties
指導教授:康淵康淵引用關係
指導教授(外文):Yuan Kang
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:144
中文關鍵詞:磨床機床結構設計有限元素方法實驗模態建模動態分析
外文關鍵詞:GrinderStructure design of tool machineFinite element methodExperimental modelingDynamic analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
高速切削為目前工具機在加工技術方面商業競爭的立基點,由於高速切削時,大的進給速度及主軸轉速引致了工具機的振動,而振動限制了工件之切削速度,降低了工件之精度,進而損壞了工具機之品質,因此工具機振動成為高速切削之關鍵性因素。此外,工具機的造型設計應趨向簡潔明快,予人結構緊密,性能可靠的感覺,若造型停滯沒有新款式,將影響價格及銷售量。因此造型佈局對結構的影響也成必要的工作。
要解決工具機振動問題,已非單純將結構加粗所能克服,尤其移動結構(如主軸箱、工作台等),其重量越大,激振越大且定位控制之精度也越差。改善振動問題得由增大工具機結構靜動剛度,及增加結構材料阻尼性或附加阻尼裝置著手。同樣的為了克服切削時的振動現象,必先瞭解切削動態,工具機結構動態以及兩者之耦合動態。由於工具機振動的影響重大,唯有基於學理始能發展出解決方法,因此抑制振動的對策得由分析及實驗的手段,預測及尋找振動發生的原因,再經由剛度增加的結構設計及加裝阻尼器予以解決。
本研究將發展工具機床結構設計之電腦化技術,目的在建立「提昇機床結構靜動剛度之設計方法」。因此研究內容包括1.建立工具機床有限元素分析的方法,計算機床結構動態特性,探討工具機床的靜動剛性; 2.建立結構動態測試的方法,一方面驗証分析模型之正確性,一方面鑑別子結構之間接點之動態參數;3.探討改善結構動態剛度及切削振動之方法,以有限元素分析方法,探討設計參數之影響;4.建立成型磨削工具機滿足切削動態特性要求的設計法則。
High-speed cutting for machine tool is becoming an important business competition for process technology. Because of high speed cutting, high feeding rate and spindle rotational speed cause the vibration of the machine tool. Then, the vibration limits the speed of cutting and lows the precision. Also, it damages the quality of the machine tool. Therefore, the vibration of the machine tool is the key point of high-speed cutting. Besides, the style of the machine tool should be simple and make people feel reliable. If the style of the machine tool were always the same, that would affect the price and sales. Therefore, the overall arrangement of the style might be an influence for the structure.
In order to solve the problems of vibration, to increase stiffness of the structure is not the only way to overcome it, especially for the movement structure (for instance, the box of spindle, the work table, etc.). The weight of the structure is heavier, the vibration is more violent, and the precision of the fixed position would be worse. To improve the vibration should start with enlarging the static dynamic stiffness structure of the machine tool, increasing the structure of damping or adding damper. Also, in order to overcome the situation of vibration while cutting, have to understand the way of cutting, the structure of the machine tool and the way that both of them work. Because the vibration of the machine tool is very important, the only way to find out the solution is based on the rules of study. Therefore, the way to deal with stopping the vibration should depend on analyzing, experimenting, predicting and looking for the reasons of vibration and by the way of increasing the stiffness of structure and adding damper to solve the problems.
This study develops the computation technology and structure design of tool mechines; its purpose is to establish the design method for improving the static dynamic stiffness structure of machine tool. Therefore the research is including 1. To establish the FEM method of cutting machine tool, to calculate the dynamic characteristics of machine tool structure, to examine the static dynamic stiffness of cutting machine tool. 2. Establish the method of structure dynamic test for examining the accuracy of analysis module and finding out the dynamic parameter of structure. 3. To probe into the method of improving the structure of dynamic stiffness and cutting vibration, and establish the FEM to determine the static and dynamic characteristics and to probe the effect of design parameter. 4. To establish the design rule of the machine tool to satisfy the cutting dynamic characteristic.
中文摘要…………………………………………………………….Ⅰ
英文摘要…………………………………………………………….Ⅱ
致謝….………………………………………………………………Ⅳ
目錄……………………………………………………………….…Ⅴ
表目錄……………………………………………………………….Ⅵ
圖目錄……………………………………………………………….Ⅶ
第一章 導論…………………………………………………………...1
第二章 磨床之結構分析……………………………………………...6
2.1 磨床結構組合………………………………………………6
2.2 機械結構動態建模混合方法………………………………6
2.3 子結構分解………………………………………………..12
2.4 子結構自由度凝聚………………………………………..12
2.5 子結構結合面之動態參數鑑別…………………………..32
2.6 有限元素模型的修正……………………………………..33
2.7 動態子結構綜合法………………………………………..33
2.8 接觸剛度之影響…………………………………………..38
2.9 子結構綜合及分析實例…………………………………..38
第三章 磨床之結構模態測試……………………………………….48
3.1 模態測試原理……………………………………………..48
3.2 榮光磨床之動態測試.……..…………………………….50
第四章 模床動態性能優化之電腦輔助工程……………………….70
4.1 動態性能優化原理………………………………………..70
4.2 機床優化之設計指標……………………………………..71
4.3 榮光新型磨床之動態分析及性能評價…………………..77
4.4磨床之優化計實例………………………………….……..78
第五章 結論………………………………………………………...143
參考文獻…………………………………………………………...144
[1] R. S. Hahn, 1954, On the Theory of Regenerative Chatter in Precision Grinding Operations, Trans. ASME, B, 76(1), 593-597.
[2] R. A. Thompson, 1974, On the Doubly Regenerative Stability of a Grinder, Trans. ASME, B, 96(1).
[3] N. Saravanja-Fabris, A.F.D’Souza, 1974, Stability Analysis of Chatter in Metal Cutting, Trans. ASME, B, 670-675.
[4] N. H. Hanna, S. A. Tobias, 1974, A Theory of Nonlinear Regenerative Chatter, Trans. ASME, B, 247-255.
[5] Masanori O-Hori, Hisayoshi Sato, et al., 1987,Correlation of Cutting Area with Cutting Force During Self-Excited Vibration, Bull. JSME, 1987, 30(263), 861-867.
[6] Masahiro Doi, Masami Masuko, et al., 1985, A Study on Parametric Vibration in Chuck Work, Bull. JSME, 28(245), 2772-2781.
[7] J. Tlusty, R. Livingston IV, Y.B. Teng, 1988, Nonlinearities in Spindle Bearing and Their Effects, Anna. CIRP, 37(1), 269-273.
[8] J. Tlusty, F. Ismail, 1981, Basic Non-linearity in Machining Chatter, Anna. CIRP, 30(1), 299-304.
[9] N. Saravanja-Fabris, A.F.D’Souza, 1974, Nonlinear Stability Analysis of Chatter in Metal Cutting, Trans. ASME, B, 670-675.
[10] R. A. Thompson, 1986, On the Doudly Renerative Stability of A Grinder: The Theory of Chatter Growth, Trans. ASME, B, 108(2), 75-82.
[11] R. A. Thompson, 1986, On the Doudly Renerative Stability of a Grinder: The Mathematical Analysis of Chatter Growth, Trans. ASME, B, 108(2), 83-92.
[12] X. G. Yang, J. W. Chen, S. Z. Li, K. F. Eman, 1989, The Theoretical Stability Chart of Machine Tools─A Development of S.A. Tobias’ Theory, Int. J. Mach. Tools Manufacture, 29(2), 267-274.
[13] J. P. Gurney, 1962, Analysis of Two Degrees of Freedom Instability in Machine Tools, J. Mech. Eng. Scie., 14(1), 53.
[14] E. Salje, 1956, Self-Excited Vibrations of Systems with Two Degrees of Freedom, Trans. ASME, B, 78, 737.
[15] J. Tlusty, F. Ismail, 1981, Basic Non-Linearity in Maching Chatter, Anna. CIRP, 30(1), 299-304.
[16] R. N. Arnold, 1946, The Mechanism of Tool Vibration in Cutting of Steel, Proc. I. Mech. E., 154, 261-284.
[17] T. R. Sisson, R. L. Kegg, 1969, An Explanation of Low Speed Chatter Effects, Trans. ASME, B, 91, 951.
[18] E. Marui, et al., 1983, Chatter Vibration of Lathe Tools, Trans. ASME, B, 105, 107-113.
[19] A. M. Sharan, S. Sankar, T. S. Sankar, 1983, Dynamic Analysis and Optimal Selection of Parameters of A Finite Element Modeled Lathe Spindle under Random Cutting Forces, J. Vib. Acoust Stress Reliab Des., 105(2), 467-475.
[20] A. M. Shabana, B. Thomas, 1987, Chatter Vibration of Flexible Multibody Machine Tool Mechanisms, Mech. Mach. Theory, 22(4), 359-369.
[21] A. M. Sharan, T. S. Sanker, S. Sanker, 1981, Dynamic Behavior of Lathe Spindles with Elastic Supports Including Damping by Finite Element Analysis, Shock. Vib. Bull, May, (51), 1-10.
[22] N. Okubo, Y. Yoshida, 1982, Application of Modal Analysis to Machine Tool Structures, Anna. CIRP, 31(1), 243-246.
[23] M. Weck, H. Heinrichs, 1981, Efficient Finite-Element Structural Analysis by Interactive Graphic Mesh Generation, Anna. CIRP, 30(1), 279-284.
[24] B. K. Fusell and K. Srinivasan, 1989, On-line Identification of End Milling Process Parameter, Trans. ASME, B, 111, 322-330.
[25] Wang Guanfu, Peng Zemin, 1985, Modal Synthesis Technique of Machine Tool Structure, Proc. 3rd Int. Modal Analysis Conf., 1185-1193.
[26] Wang Guanfu, Peng Zemin, 1986, Application of Modal Analysis Methodology to Study Machine Process Stability of Machine Tools, Proc. 4th Int. Modal Analysis Conf., 209-216.
[27] Y. C. Shin, et al., 1989, Experimental Complex Modal Analysis of Machine Tool Structures, Trans. ASME, B, 111, 116-124.
[28] J. Peters, P. Vanherck, H. Van Brussel, 1971, The Measurement of the Dynamic Cutting Force Coefficients, Anna. CIRP, 20(1).
[29] J. Peters, et al., 1971, The Measurement of the Dynamic Cutting Force Coefficients, Anna. CIRP, 20(1), 147-153.
[30] T. Y. Ahn, K.F. Eman, S. M. Wu, 1987, Determination of Inner and Outer Modulation Dynamics in Orthogonal Cutting, Trans. ASME, B, 109, 275-280.
[31] D. W. Wu, 1989, A New Approach of Formulating The Transfer Function for Dynamic Cutting Process, Trans. ASME, B, 111(1), 37-41.
[32] Bor-Sen Chen, Yih-Fang Chang, 1989, Constant Turning Force Adaptive Control Design, Trans. ASME, B, 111(1), 125-131.
[33] E. Marui, S. Kato, 1988, The Mechanism of Chatter Vibration in a Spindle-Workpiece System: Part 2─Characteristics of Dynamic Cutting Force and Vibration Energy, Trans. ASME, B, 110, 242-247.
[34] D. W. Wu, 1988, Comprehensive Dynamic Cutting Force Modal and Its Application to Wave-Removing Process, Trans. ASME, B, 110, 153-161.
[35] M. Weck, J. Alldieck, 1987, The Originating Mechanisms of Whell Regenerative Grinding Vibration, Anna. CIRP, 38(1), 381-384.
[36] M. Weck, etc., 1978, Assessing the Chatter Behavior of Machine Tools, Anna. CIRP, 27(1).
[37] M. A. EiBaradie, M. M. Sadek, S.A. Tobias, 1976, Dynamic Acceptance Tests for Horizontal Milling Machines Based on A Statistical Theory of Machine Tool Chatter, Trans. ASME, B, 98(3), 919-929.
[38] B. H. Lu, Z.H. Lin, X. T. Huang, C.H. Ku, S.A. Tobias, 1983, On-Line Identification of Dynamic Behavior of Machine Tool Structures During Stable Cutting, Anna. CIRP, 32(1), 315-318.
[39] M. Weck, R. 1987, Eckstein, An Examination Technique to Determine Static Weakpoint of Machine Tools, Anna. CIRP, 36(1), 257-261.
[40] Z. H. Lin, 1988, On-Line Measurement and Assessment of Machine Tool Dynamics, Int. J. Mach. Tools Manuf., 28(2), 93-101.
[41] Lee, A. C., Kang, Y., and Liu, S. L., 1993, "The Steady-State Analysis of a Rotor Mounted on Nonlinear Bearing by Modified Transfer Matrix," International Journal of Mechanical Sciences, Vol. 35, No. 6, 451-462. (SCI)
[42] Chang, Y. F., Kang, Y. and Chen, K. Y., 1995, "Correction of Finite Element Model of a Rotor-Bearing System Using Modal Sensitivity Analysis," Chung-Yuan Journal, 23(1), 121-130.
[43] Kang, Y. and Hwang, W. W., 1996, "Influence of Bearing Damping on Instability of Asymmetric Shafts, Part I:Stabilizing and Destabilizing Effects," Int. J. Mech. Sci., 38(12), 1349-1358.(SCI) 計劃編號: NSC-82-0424-E-033 -061.
[44] Kang, Y., Chen K. E., and Lee Y. G., 1997, "Influence of Bearing Damping on Instability of Asymmetric Shafts, Part IV:Effects of Fluid-Film Bearings and Bearing Design, " Int. J. Mech. Sci. 40(4), 313-324. (SCI) 計劃編號:NSC-82-0424-E-033 —061.
[45] 康淵, 張義鋒, 劉君傑, 1997, "轉子-軸承-基座系統之動態分析," 中原學報, 25(1), 1-13.
[46] Kang, Y., 1997, "Acceleration Test Methodology for Monitoring of Die Bonder," Motorola Asia/Pacific Regional Meeting, Seremban, Malaysia, June.
[47] 康淵, 1995, "木工機械旋轉件之動平衡," 恩德實業公司, 苗栗後龍.
[48] 康淵, 1996, "捲線機之動態分析及制振機構設計及分析," 10月.
[49] 康淵, 1996, "主軸之動態分析及模態實驗," 7月, 恩德實業公司.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top