跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 21:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡映麟
研究生(外文):Ying-Ling Tsai
論文名稱:錫鋅系無鉛銲錫合金之熱物性質研究
論文名稱(外文):A Study on the Thermo Physical Properties of Tin-Zinc Based Lead-Free Solder Alloys
指導教授:黃文星黃文星引用關係
指導教授(外文):Wen-Sing Hwang
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:93
語文別:中文
論文頁數:110
中文關鍵詞:電腦輔助冷卻曲線分析無鉛銲錫
外文關鍵詞:lead-free soldercomputer-aided cooling curve analysis
相關次數:
  • 被引用被引用:4
  • 點閱點閱:481
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
  本研究量測Sn-9Zn-xX (X=Ag、Cu)不同無鉛銲錫合金系統的熱物性質,並探討不同添加元素及其添加量對合金系統的固液相溫度、兩相區範圍、潛熱釋放模式、熔解熱與熱膨脹係數等的影響。
  使用電腦輔助冷卻曲線分析的方法來量測與計算不同合金系統之固液相溫度、兩相區溫度及潛熱釋放模式,並以黃提出的凝固模式將解析結果定量呈現。使用示差掃描測定儀量測合金的固液相溫度並計算合金的熔解熱。利用掃描式電子顯微鏡及電子探針微區分析儀觀察合金生成相的微組織,其化學組成與元素分布情形則以能量散佈光譜儀及波長散佈光譜儀分析。另外,使用熱膨脹儀量測Sn-9Zn-xAg合金系統的熱膨脹係數。
  研究結果發現不論在升溫或冷卻的過程,Sn-9Zn-xAg三元合金的液相溫度及兩相區範圍,皆會隨著銀含量的增加,且銀含量到1.5wt%後,曲線開使出現第二個峰,。以潛熱釋放模式來看,Sn-9Zn-0.5Ag合金類似共晶合金的釋放模式,而1.5Ag、2.5Ag以及3.5Ag等合金的模式為生成兩條垂直線,一條代表β-Sn的生成,一條代表Sn-9Zn共晶相的析出。而且銀含量愈高,初晶β-Sn的生成量愈多,共晶相的析出量則愈少。由電腦輔助冷卻曲線分析及微結構分析顯示Sn-9Zn-xAg三元合金的凝固機構為先析出鋅-銀介金屬化合物、接著β-Sn相凝固、最後為生成層狀Sn-Zn共晶結構。且隨著銀含量增加,鋅-銀介金屬化合物析出量增加,β-Sn相相對增加,層狀共晶結構相對減少。而凝固模式中的參數fp數值會隨之增加。而隨著冷卻速率增快,初晶相固相率fp及非線性因子ne、np數值皆會隨之降低。Sn-9Zn-xAg合金的熱膨脹係數會隨著溫度增加而增加,溫度到達90℃時,即不再有明顯的變化。隨著銀含量的增加,平均熱膨脹係數會線性上升。當銀含量超過1.5wt%時,無鉛銲錫合金的熱膨脹係數會明顯的大於傳統鉛-錫合金。根據上述結果,Sn-9Zn-xAg無鉛銲錫合金從熱物性質的觀點來看,銀的含量不應超過1.5wt%。
Sn-9Zn-xCu三元合金方面,在不論在升溫或冷卻的過程,合金的液相溫度及兩相區範圍,也會隨著銅含量的增加而升高,只是在0.6Cu時會有類似共晶的現象。Sn-9Zn-xCu三元合金的凝固機構為先析出Cu-Zn介金屬化合物、接著為β-Sn相、最後為生成層狀Sn-Zn共晶結構。隨著銅含量增加,Cu-Zn介金屬化合物增加,β-Sn相跟著增加,層狀共晶結構相則相對減少。Sn-9Zn-xCu中0.1Cu與0.6Cu的潛熱釋放模式類似共晶合金的釋放模式。而0.5Cu、1.5Cu、2.5Cu以及3.5Cu等合金的潛熱釋放模式為生成兩條垂直線,一條代表β-Sn的生成,一條代表Sn-9Zn共晶相的析出。且Cu含量愈高,初晶β-Sn的生成量愈多,共晶相的析出量則愈少,因為Cu含量增加改變了生成相的比例,使得潛熱釋放模式也隨之變化。
  Sn-9Zn-xAg與Sn-9Zn-xCu兩種三元合金系統的熱物行為相當類似。實驗量測三種錫-鋅系無鉛銲錫合金系統的熔解熱皆高於傳統錫-鉛銲錫合金。
  The thermal physical properties of the Sn-9Zn-xX (X = Ag, Cu) lead-free solder alloy systems are examined in this study. The effects of alloy composition and cooling rate on the liquidus temperature, solidus temperature, pasty ranges, latent heat release modes, fusion heats and coefficient of thermal expansion were investigated.
  A Computer Aided-Cooling Curve Analysis (CA-CCA) technique was used to determine the pasty ranges and latent heat release modes for the alloys. The solidification model proposed by Hwang was used to quantity the results. The Differential scanning calorimetry was also used to measure the liquidus temperature and solidus temperature of alloys. The fusion heat of the alloys was also calculated. The morphology of alloys and intermetallic compounds were observed with Scanning electron microscope and Electron probe microanalyzer. Energy dispersive spectrometer and Wave dispersive spectrometer were used to analyze the chemical compositions and elemental dispersion of intermetallic compounds. The CTE of Sn-Zn-xAg alloys is measured by using a dilatometer with a heating rate of 5 �aC/min from 40 �aC to 120 �aC.
  The experimental results show that as the silver content of the Sn-9Zn-xAg alloy increases, the liquidus temperature rises and the pasty range broadens. However, when the silver content exceeds 1.5%, a second peak can be observed from the heating and cooling curves. As long as the silver content is below 0.5 wt%, silver has little effect on the microstructure because it is basically the eutectic Sn-9Zn and the fs-T relationship is nearly a vertical line. However, as the silver content exceeds 1.5 wt%, the formation of the Ag-Zn intermetallic compounds becomes obvious. This causes the alloy composition to deviate from the eutectic and to lean towards the tin-rich side of the Sn-Zn phase diagram. This in turn causes the proportion of the primary tin phase to increase and that of the zinc-tin eutectic phase to decrease. This is reflected on the plot of the fs-T relationship by two distinct vertical regions. One corresponds to the primary tin phase and the other to the eutectic phase. As the silver content further increases, the effects of intermetallic compound formation become even more obvious. As an alternative to CA-CCA, Huang’s model can be used to obtain a quantitative fs-T function. As the silver content increases, the primary solid fraction for Huang’s model increases. As the cooling rate increases, the primary solid fraction and the nonlinearity factors ne and np decrease. The CTE is increased with increasing temperature. When the temperature reaches 90 ℃, the increase becomes less obvious. Furthermore, CTE increases linearly with increasing silver content. As the silver contents are over 1.5%, the values of CTE are greater than the conventional Sn-37Pb alloy. Based on the above observations, silver content should not exceed a maximum of 1.5% in order to develop a lead free solder with proper thermo-physical properties.
  The results also show that as the copper content of the Sn-9Zn-xCu alloy increases, the liquidus temperature rises and the pasty range broadens. However, when the copper content is 0.6 wt%, the eutectic like situation can be observed from the heating and cooling curves. As long as the copper content is below 0.1 wt%, copper has little effect on the microstructure, which is basically the eutectic Sn-9Zn and the fs-T relationship is nearly a vertical line. However, as the copper content exceeds 0.6 wt%, the formation of Cu-Zn intermetallic compounds becomes obvious. This is reflected on the plot of the fs-T relationship by two distinct vertical regions. One corresponds to the primary tin phase and the other to the eutectic phase. As the copper content further increases, the effects of intermetallic compound formation become even more obvious. As an alternative to CA-CCA, Huang’s model can be used to obtain a quantitative fs-T function.
Sn-9Zn-xAg and Sn-9Zn-xCu ternary alloy systems have similar thermal physical behavior. The fusion heat of three Sn-Zn based lead free solder alloy experimental measured in this study are all higher than lead-tin solder alloy.
中文摘要 Ⅰ
英文摘要 Ⅲ
目錄 Ⅵ
表目錄 Ⅸ
圖目錄 Ⅹ
符號對照表 ⅩⅢ
英漢名詞對照表 ⅩⅣ
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 4
第二章 文獻回顧 5
2-1 傳統鉛錫合金與無鉛銲錫 5
2-2 無鉛銲錫之重要基本性質 6
2-2-1 熔點 6
2-2-2 熔解熱釋放與固相率變化 7
2-2-3 熱膨脹係數 7
2-2-4 表面張力 8
2-2-5 電阻係數 8
2-2-6 微結構 8
2-2-7 銲錫與基材之界面反應 9
2-2-8 剪切強度 9
2-2-9 伸長率 10
2-2-10 抗潛變性 10
2-2-11 氧化行為 10
2-2-12 抗腐蝕性 11
2-3 常見無鉛銲錫合金系統 11
2-3-1 Sn-Ag合金系統 11
2-3-2 Sn-Au合金系統 12
2-3-3 Sn-Bi合金系統 13
2-3-4 Sn-Cu合金系統 14
2-3-5 Sn-In合金系統 14
2-3-6 Sn-Sb合金系統 15
2-3-7 Sn-Zn合金系統 16
第三章 數學分析 26
3-1 潛熱總量與凝固潛熱釋放模式 26
3-2 電腦輔助冷卻曲線分析理論 29
3-3 固相率與溫度關係的理論分析 32
第四章 實驗方法與步驟 36
4-1 本研究之實驗材料 36
4-2 示差掃描熱量測定 36
4-3 電腦輔助冷卻曲線分析 37
4-3-1 實驗裝置 37
4-3-2 實驗步驟 38
4-4 熱膨脹係數量測 38
4-5 微觀組織觀察 39
第五章 結果與討論 43
5-1 電腦輔助冷卻曲線分析驗證與零曲線之決定 44
5-2 錫-鋅-銀無鉛銲錫合金之熱物性質量測 49
5-2-1 錫-鋅-銀合金的固液相溫度 49
5-2-2 錫-鋅-銀合金的顯微組織觀察與分析 51
5-2-3 錫-鋅-銀合金的熔解熱 53
5-2-4 錫-鋅-銀合金潛熱釋放模式 55
5-2-5 錫-鋅-銀合金的熱膨脹係數 57
5-3 錫-鋅-銅無鉛銲錫合金之熱物性質量測 86
5-3-1 錫-鋅-銅合金固液相溫度與熔解熱 86
5-3-2 介金屬化合物熱力學之解析 87
5-3-2 錫-鋅-銅合金的潛熱釋放模式與微觀組織 87
第六章 結論 101
參考文獻 103
Metal Handbook, A. W. Worcester and J. T. O’Reilly, ASM, 10th Edition, (1990), Vol. 2, pp.543-556.
.S. Jin, “Developing Lead-Free Solders: A Challenge and Opportunity”, JOM, July (1993), pp.13.
.S. S. Kang and A. K. Sarkhel, “Lead Free Solders for Electronic Packaging”, J. Elec. Mater., Vol. 23, (1994), pp.701-707.
.M. McCormack, S. Jin, H. S. Chen, and D. A. Machusak, “New Lead-Free Sn-Zn-In Solder Alloys”, J. Elec. Mater., Vol. 23, (1994), pp.687-690.
.J. Glarzer, “Microstructure and Mechanical Properties of Pb-Free Solder Alloys for Low-Cost Electronic Assembly: A Review”, J. Elec. Mater., Vol. 23, (1994), pp.693-700.
.W. B. Hampshire, “The Search for Lead-Free Solders”, Soldering and Surface Mount Tech., No. 14, June (1993), pp.49-52.
.N. C. Lee, “Getting Ready for Lead-free Solders”, Soldering and Surface Mount Techn., No. 26, July (1997), pp.65-69.
.United States Patent, No. 6241942 B1, Jun. 5, 2001.
.T. Takemoto, T. Funaki, and A. Matsunawa, “Electrochemical Investigation on the Effect of Silver Addition on Wettability of Sn-Zn System Lead-Free Solder”, J. Jpn. Welding Soc., Vol. 17, No. 2, (1999), pp.251-258.
.K. L. Lin, and C. L. Shih, “Wetting interaction between Sn-Zn-Ag solders and Cu”, J. Elec. Mater., Vol. 32, (2002), pp.95-100.
.United States Patent, No. 5698160, Dec. 16, 1997.
.J. M. Song, G. F. Lan, T.S. Lui and L. H. Chen, “Microstructure and tensile properties of Sn-9Zn-xAg lead-free solder alloys”, Scripta Mater., Vol. 48, No. 8, (2003), pp.1047-1051.
.United States Patent, No. 5718868, Feb. 17, 1998.
.Y. S. Kim, K. S. Kim, C. W. Hwang and K. Suganuma, “Effect of composition and cooling rate on microstructure and tensile properties of Sn-Zn-Bi alloys”, J. of Alloys and Compounds, Vol. 352, (2003), pp.237-245.
.N. A. Lange, Handbook of Chemistry, Sandusky, Ohio, 1956, pp.100.
.S. Kikuchi, M. Nishimura, K. Suetsugu, T. Ikari and K. Matsushige, “Strength of bonding interface in lead-free Sn alloy solders”, Materials Science and Engineering A - Structural Materials Properties Microstructure and Processing, Vol. 319, (2001), pp.475-479.
.M. Nishiura, A. Nakayama, S. Sakatani, Y. Kohara, K. Uenishi and K. F. Kobayashi, “Mechanical strength and microstructure of BGA joints using lead-free solders”, Mater. Trans., Vol. 43, No. 8, (2002), pp.1802-1807.
.C. M. L. Wu and M. L. Huang, “Creep behavior of eutectic Sn-Cu lead-free solder alloy ”, J. Elec. Mater., Vol. 31, No. 5, (2002), pp.442-448.
.洪敏雄、游善溥,“電子構裝用無鉛銲錫”,科儀新知第二十卷二期,民國87年,57-66頁。
.C. M. L. Wu, D. Q. Yu, C. M. T. Law and L. Wang, “Improvements of microstructure, wettability, tensile and creep strength of eutectic Sn-Ag alloy by doping with rare-earth elements”, J. of Mater. Res., Vol. 17, No. 12, (2002), pp.3146-3154.
.D. G. Ivey, “Microstructural characterization of Au/Sn solder for packaging in optoelectronic applications”, Micron, Vol. 29, No. 4, (1998), pp.281-287.
.W. Sun and D. G. Ivey, “Development of an electroplating solution for code positing Au-Sn alloys”, Materials Science and Engineering B - Solid State Materials for Advanced Technology, Vol. 65, No. 2, (1999), pp.111-122.
.P. L. Liu and J. K. Shang, “Interfacial segregation of bismuth in copper/tin-bismuth solder interconnect”, Scripta Mater., Vol. 44, No.7, (2001), pp.1019-1023.
.H. W. Miao and J. G. Duh, “Microstructure evolution in Sn-Bi and Sn-Bi-Cu solder joints under thermal aging”, Mater. Chem. Phys., Vol. 71, No. 3, (2001), pp.255-271.
.C. B. Lee, S. B. Jung, Y. E. Shin and C. C. Shur, “The effect of Bi concentration on wettability of Cu substrate by Sn-Bi solders”, Mater. Trans., Vol. 42, No. 5, (2001), pp.751-755.
.P. L. Liu and J. K. Shang, “Interfacial segregation of bismuth in copper/tin-bismuth solder interconnect”, Scripta Mater., Vol. 44, No. 7, (2001), pp.1019-1023.
.S. H. Huh, K. S. Kim and K. Suganuma, “Effect of Ag addition on the microstructural and mechanical properties of Sn-Cu eutectic solder”, Mater. Trans., Vol. 42, No. 5, (2001), pp.739-744.
.N. Tamura, R. Ohshita, M. Fujimoto, S. Fujitani, M. Kamino and I. Yonezu, “Study on the anode behavior of Sn and Sn-Cu alloy thin-film electrodes”, J. of Power Sources, Vol. 107, No. 1, (2002), pp.48-55.
.J. W. Morris, Jr., J. L. Freer Goldstein and Z. Mei, “Microstructure and Mechanical Properties of Sn-In and Sn-Bi Solders”, JOM, July (1993), pp.25-27.
.United States Patent, No. 6179935 B1, Jan. 30, 2001.
.ASM Handbook, Vol. 3, Alloy Phase Diagrams, pp.25-383.
.M. J. Voss and H. L. Tsai, “Effects of the Rate of Latent Heat Release on Fluid Flow and Solidification Patterns During Alloy Solidification”, Int. J. Eng. Sci., Vol. 34, No. 6, (1996), pp.715-737.
.M. C. Flemings, “Solidification Processing”, McGraw-Hill International Editions, 1974.
.S. Argyropoulos, B. Closset, J. E. Gruzleski, and H. Oger, “The Quantitative Control of Modification in Al-Si Foundry Alloys Using a Thermal Analysis Technique”, AFS Transactions, (1983), pp.351-358.
.D. M. Stefanescu, G. Upadhya, and D. Bandyopadhyay, “Heat Transfer Solidification Kinetics Modeling of Solidification of Castings”, Metall. Trans. A, Vol. 21A, (1990), pp.997-1005.
.I. G. Chen and D. M. Stefanescu, “Computer-Aided Differential Thermal Analysis of Spheroidal and Compacted Graphite Cast Irons”, AFS Transactions, (1984), pp.947-965.
.K. G. Upadhya, D. M. Stefanescu, K. Lieu, and D. P. Yeager, “Computer-Aided Cooling Curve Analysis:Principles and Applications in Metal Casting”, AFS Transactions, (1989), pp.61-66.
.J. O. Barlow and D. M. Stefanescu, “Computer-Aided Cooling Curve Analysis Revisited,” AFS Transactions, (1997), pp.349-354.
.C. H. Su and H. L. Tsai, “A Direct Method to Include Latent Heat Effect for Modeling Casting Solidification”, AFS Transactions, (1991), pp.781-789.
.J. H. Chen and H. L. Tsai, “Comparison on Different Models of Latent Heat Release for Modeling Casting Solidification”, AFS Transactions, (1990), pp.539-546.
.S. H. Jong, and W. S. Hwang, “Study of Functional Relationship of Fraction of Solid with Temperature in Mushy Range for A356 Al Alloy”, AFS Transactions, (1992), pp.939-946.
.Y. F. Chen, S. H. Jong, and W. S. Hwang, “Effects of Cooling Rate on Latent Heat Released Mode of near Pure Aluminum and Aluminum-silicon Alloys”, Mater. Sci. Tech., Vol. 12, (1996), pp.539-544.
.J. H. Lienhard IV and J. H. Lienhard V, A Heat Transfer Textbook, 3rd Edition, Phlogiston Press, Cambridge, (2002), pp.21-25.
.H. Huang, V. K. Suri, J. L. Hill, and J. T. Berry, “Heat Source/Sink Algorithm for Modeling Phase Changes during Metal Solidification in Castings and Water Evaporation in Green Sand Molds”, AFS Transactions, (1991), pp.685-689.
.S. W. Yoon, J. R. Soh, H. M. Lee and Lee BJ, “Thermodynamics-aided Alloy Design and Evaluation of Pb-free Solder, Sn-Bi-In-Zn System”, Acta Mater., Vol. 45, No. 3, (1997), pp.951-960.
.陳信文,“無鉛銲料簡介”,電子與材料,民國88年,第一期,74-77頁。
.T. Siewert, S. Liu, D. R. Smith and J. C. Madeni, Database for Solder Properties with Emphasis on New Lead-free Solders, Colorado, 2002, pp.57.
.J. R. Lloyd, C. Zhang and H. L. Tan, “Measurements of Thermal conductivity and Specific Heat of Lead Free Solder”, IEEE/CPMT International Electronics Manufacturing Technology Symposium, Austin, Institute of Electrical and Electronics Engineers, (1995), pp.252-262.
.J. H. Lau and C. Chang, “TMA, DMA, DSC, and TGA of Lead Free Solders”, 1998 Electronic Components and Technology Conference, Seattle, Institute of Electrical and Electronics Engineers, (1998), pp.1339-1344.
.M. McCormack and S. Jin, “Improved Mechanical Properties in New Pb-free Solder Alloys”, J. Elec. Mater., Vol. 23, N0. 8, (1994), pp.715-720.
.J. M. Song and K. L. Lin, “Double peritectic behavior of Ag-Zn intermetallics in Sn-Zn-Ag solder alloys”, J. Mater. Res., Vol. 19, No. 9 (2004), pp.2719-2724.
.R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser and K. K. Kelley, “Selected Values of the Thermodynamic Properties of Binary Alloys”, (American Society for Metals, Metals Park, Ohio, 1973), pp.103-111.
.R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser and K. K. Kelley, “Selected Values of the Thermodynamic Properties of Binary Alloys”, (American Society for Metals, Metals Park, Ohio, 1973), pp.115-121.
.J. D. Cox, D. D., Wagman and V. A. Medvedev, CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, USA, 1989.
.S. W. Chen, C. C. Lin and C. M. Chen, “Determination of the Melting and Solidification Characteristics of Solders Using Differential Scanning Calorimetry”, Metall. and Mater. Trans. A, 29A (1998), pp.1965-1972.
.A. Mulugeta and S. Gunna, “Lead-free Solders in Microelectronics”, Mater. Sci. Eng., Vol. R27 (2000), pp.95-141.
.R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser and K. K. Kelley, “Selected Values of the Thermodynamic Properties of Binary Alloys”, (American Society for Metals, Metals Park, Ohio, 1973), pp.795-800.
.R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser and K. K. Kelley, “Selected Values of the Thermodynamic Properties of Binary Alloys”, (American Society for Metals, Metals Park, Ohio, 1973), pp.810-822.
.游善溥,博士論文,國立成功大學材料科學及工程學系,(2000),92頁。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top