跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/01 01:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃淑暖
研究生(外文):Shu-Nuan Huang
論文名稱:都市下水污泥堆肥過程重金屬與有機物轉化之相關性研究
論文名稱(外文):The Relationship between Heavy Metal and Organic Matter Transformation in Sewage Sludge Composting
指導教授:江康鈺江康鈺引用關係
指導教授(外文):Kung-Yuh Chiang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:200
中文關鍵詞:下水污泥重金屬腐植酸黃酸序列萃取植物有效性
外文關鍵詞:sewage sludgeSequential Chemical Extractionheavy metalhumic acidfulvic acidDTPA
相關次數:
  • 被引用被引用:17
  • 點閱點閱:622
  • 評分評分:
  • 下載下載:85
  • 收藏至我的研究室書目清單書目收藏:1
摘 要
本研究利用天然沸石作為下水污泥共同堆肥之添加劑,除探討堆肥過程中沸石對重金屬變化之影響外,並利用黃酸及腐植酸之E4/E6值、傅立葉紅外轉換光譜(FTIR)以及碳-13核磁共振光譜(13C-NMR)分析堆肥過程有機物官能基之轉化,且進一步分析重金屬與有機物轉化之相關性。研究結果顯示,在物化特性分析方面,各試驗組之堆肥成品皆達腐熟,符合一般堆肥成品應用之規範;在重金屬鋅、銅、鎘、鉻、鎳及鉛之總量濃度,均低於綠農地應用之限值,同時毒性溶出濃度(TCLP)則均符合法規管制範圍。
在重金屬相態分析方面,鋅以鐵錳氧化態為主,隨著堆肥反應可交換態比例有增加之現象,可見鋅在堆肥過程之穩定性較差;銅以有機物鍵結態與鐵錳氧化態為主要相態分佈,其可交換態與碳酸鹽態分佈比例總和皆較反應初期為低;鉛及鎳之可交換態、碳酸鹽態及鐵錳氧化態比例,均隨堆肥反應過程而有明顯減少之趨勢,且添加沸石之試驗組結果顯示,鎳之有機物鍵結態及殘餘態皆較控制組比例為多,顯示添加沸石對鎳具有明顯吸附交換作用,可有效降低鎳之移動性;至於重金屬鉻在堆肥成品中則以殘餘態為主,在堆肥反應過程之穩定性較佳。綜合前述相態分佈之實驗結果可知,下水污泥堆肥重金屬除鋅之穩定性較差外,其餘試驗重金屬於堆肥過程之移動性均降低,未來於綠農地應用時均有顯著之助益。
根據堆肥初期黃酸及腐植酸之E4/E6分析結果顯示,E4/E6值受有機物分解成較小分子之影響,致使兩者之E4/E6值均呈現增加之現象,隨著堆肥反應之進行,小分子再度合成較穩定之大分子,腐植酸之E4/E6值逐漸降低至5以下,顯示本試驗之堆肥已達腐熟。在FTIR光譜分析及其波峰強度變化結果顯示,隨堆肥反應持續進行脂肪類及多醣類碳等易分解有機物逐漸被分解並轉化為烯烴類、芳香族及苯環類等更安定之有機物。另根據13C-NMR光譜分析結果顯示,下水污泥堆肥過程脂肪族區之面積逐漸減少,而芳香族及羧基與酯類區之面積增加,此亦與前述FTIR分析之結果相吻合。由此可知,下水污泥中之易分解有機物於堆肥反應過程轉變成較安定之芳香族有機物,並使堆肥成品更趨於腐熟。
重金屬與有機物官能基轉化之相關性結果顯示,植物有效性-鉛(DTPA-Pb)會隨著鉛總量濃度而減少,而鎳則隨總量濃度增加而增加。在DTPA與序列萃取分析之相關性結果,DTPA-Zn與其可交換態比例相關性高,顯示DTPA-Zn則以可交換態存在為主;而DTPA-Cu隨著有機態比例增加而增加;DTPA-Ni則與可交換態及碳酸鹽態呈現高度之正相關性。重金屬與有機物轉化之相關性,則以金屬銅及鉛之總量濃度與alkene C/aliphatic C之比例變化呈現較高之正相關性,亦即隨著堆肥過程中脂肪族碳減少而烯烴類(C=C)增加。
關鍵詞:下水污泥(sewage sludge)、重金屬(heavy metal)、黃酸(fulvic acid)、腐植酸(humic acid)、植物有效性(DTPA)、序列萃取(Sequential Chemical Extraction)
Abstract
This study focused on the uptake and variation of heavy metals in a sewage sludge composting process using natural zeolite as an additive. Meanwhile, the correlation between the organic matter transformation and heavy metal in a sewage sludge composting, using the E4/E6 ration of fulvic acid and humic acid , FTIR and 13C-NMR technigues, was also discussed. Based on the physicochemical characteristics of the co-compost, the potential use for the sewage sludge compost as soil conditioner or manure is suggested, all complying with the criteria of the compost quality. The total concentrations of Zn, Cu, Cd, Ni and Pb in the compost product were far below the limit values for agricultural use. The results of TCLP analysis for the compost were all in compliance with EPA regulatory limits.
For heavy metal distribution analysis, the Iron and Manganese(Fe-Mn) oxides fraction of Zn was the major fraction. Meanwhile, the exchangeable fraction of Zn increased with the composting time. That is, it means that the Zn is an unstable metal in composting. The organic and Fe-Mn frations oxides fraction of Cu were the major fraction, and the exchangeable and carbonate fractions of Cu decreased with the composting time. The percentages of exchangeable, carbonate and Fe-Mn oxides fractions of Pb and Ni decreased significantly in the composting process. Besides, in the case of zeolite addition, the results of organic and residual fractions of Ni were higher than other controlled test. The natural zeolite additive has adsorption and exchange capacity for reducing the mobility of Ni. However, the distribution of Cr was residual fraction in the compost, and the Cr speciation would be more stable in the composting process. Accordingly, the heavy metals may reduce the mobility in the composting process, except Zn, and may enhance the feasibility for agricultural use.
The results of E4/E6 ratio of fulvic acid and humic acid indicated that the E4/E6 ratio increased with organic matters decomposition. However, increasing the composting time may tend to synthesize more larger organic matter. Therefore, the E4/E6 ratio of humic acid was less than 5. The results of FTIR analysis and it’s peak intensity variation showed that biodegradable organic matters, such as aliphatic and
polysaccharide compounds, were decomposed and transformed to more stable organic compounds, such as alkene, aromatic compounds, and aromatic rings. On the other hand, the results of 13C-NMR analysis revealed that the area of aliphatic region decreased gradually. Meanwhile, the area of aromatic, carboxyl and ester regions increased in the composting process. These above results were similar to the results of FTIR analysis. Accordingly, biodegradable organic matters in the sewage sludge will transform to more stable aromatic compounds in the composting.
The correlation between heavy metals and organic matters transformation showed that DTPA-Pb concentration decreased with an increase of Pb total concentration, however, DTPA-Ni concentration increased with an increase of Ni total concentration. The correlation between the DTPA and SCE (sequential chemical extraction) concentrations indicated that the good relationship between DTPA-Zn concentration and exchangeable fraction. That is, the DTPA-Zn concentration was presented as the exchangeable fraction. The DTPA-Cu concentration increased with an increase of Cu organic fraction. The highly positive relationship between the DTPA-Ni concentration and Ni exchangeable and carbonate fraction. In addition, the results of heavy metals and organic matters transformation showed highly positive relationship between the ratio of alkene C/aliphatic C and the total concentration of Cu and Pb. Meanwhile, the aliphatic C content decreased with an increase of alkene C content.
Keywords: Sewage sludge, heavy metal, fulvic acid, humic acid, DTPA, Sequential Chemical Extraction
摘要
英文摘要
第一章 前言
第二章 文獻回顧
第三章研究材料與方法
第四章 結果與討論
第五章 結論與建議
第六章 參考文獻
Bernal, M. P., Lopez-Real, J. M., Scott, K. M., “Application of natural zeolites for the reduction of ammonia emissions during the composting of organic wastes in a laboratory composting simulator”, Bioresource Technology, Vol. 43, pp. 35-39, 1993.
Biey, E.M., Mortier, H., Verstraete, W., “Nitrogen transfer from grey municipal solid waste to high quality compost”, Bioresource Technology, Vol. 73, pp. 47-52, 2000.
Bragato G., Leita L., Figliolia A., Nobili M.D., “Effects of sewage sludge pre-treatment on microbial biomass and biovailability of heavy metals”, Soil and Tillage Research, Vol. 46, pp. 129-134, 1998.
Chen, Y., N. Senesi., M. Schnitzer., "Information Provided on Humic Substances by E4/E6 Ratios," Soil SCI. SOC. AM. J., Vol.41, pp.352-358, 1977
Fang, M., Wong, J.W.C., “Effects of lime amendment on availability of heavy metals and maturation in sewage sludge composting”, Environmental Pollution, Vol. 106, pp.83-89, 1999.
Fang, M., Wong, J.W.C., Ma, K.K., Wong, M.H., “Co-composting of sewage sludge and coal fly ash: nutrient transformations”, Bioresource Technology, Vol. 67, pp. 19-24, 1999.
Garcia, C., Moreno, L., Herndez, T., Costa, F., “Effect of composting on sewage sludges contaminated with heavy metals”, Bioresource Technology, Vol. 53, pp. 13-19, 1995.
Ho, G., Qiao, L., “Chromium speciation in municipal solid waste: effects of clay amendment and composting”, Wat. Sci. Tech, Vol. 38, No. 2, pp. 17-23, 1998.
Hsu, J.H., Lo, S.L., “Effect of composting on characterization and leaching of copper, manganese, and zinc from swine manure”, Environmental Pollution, Vol. 114, pp.119-127, 2001.
Inbar, Y., Chen, Y., Hadar, Y., “Solid state carbon-13 nuclear magnetic resonance infrared spectroscopy of composted organic matter”, Soil Sci.Soc. Am. J. Vol. 53, pp. 1695-1701, 1989.
Ingrid, Kögel-Knabner., Patrick, G. Hatcher., Wolfgana, Zech., “Chemical structural studies of forest soil humic acids: Aromatic carbon fractiopn”, Soil Sci.Soc. Am. J. Vol. 55, pp. 241-247, 1991.
Janez Scancar., Radmila Milacic., Marjeta Strazar., Olga Burica., “Total metal concentrations and partitioning of Cd, Cr, Cu, Fe, Ni and Zn in sewage sludge”, The Science of the Total Environment., Vol. 250, pp.9-19, 2000.
Lazzari, L., Sperni, L., Bertin, P., Pavoni, B., “Correlation between inorganic (heavy metals) and organic (PCBs and PAHs) micropollutant concentrations during sewage sludge composting processes”, Chemosphere, Vol. 41, pp. 427-435, 2000.
Marinela P., Borislav V., “Kinetics of heavy metal ions removal by use of natural zeolite”, J. Environ. Sci. Health., A37, Vol. 2, pp. 139-147, 2002.
Nissen, L.R., Lepp, N. W., Edwards, R., “Synthetic zeolites as amendments for sewage sludge-based compost”, Chemosphere, Vol. 41, pp. 265-269, 2000.
Obrador A., Rico M.I., Mingot J.I., Alvarez J.M., Metal mobility and potential bioavailability in organic matter-rich soil-sludge mixtures: effect of soil type and contact time. The Science of the Total Environment, Vol. 206. p.p. 117-126, 1997.
Qiao, L., Ho, G., “The effect of clay amendment on speciation of heavy metals in sewage sludge”, Wat. Sci. Tech., Vol. 34, No. 7-8, pp. 413-420, 1996.
Qiao, L., Ho, G., “The effects of clay amendment and composting on metal speciation in digested sludge”, Wat. Res., Vol. 31, No. 5, pp. 951-964, 1997.
Sánchez-Monedero, M.A., Roig, A., Paredes, C., Bernal, M.P., “Nitrigen trsnsformation during organic waste composting by the Rutgers system and it’s effects on pH, EC and maturity of the composting mixtures”, Bioresource Technology, Vol. 78, pp. 301-308, 2001.
Schnitzer, M., Khan, S.U., “Soil organic matter”, Elsevier Scientific Publishing Company, Amsterdam Oxford New York, 1979
Sonia, M.T., Nora, F.Y.T., “Characterization and composting of poultry litter in forced-aeration piles”, Process Biochemistry, Vol. 37, pp. 869-880, 2002.
Tseng, D.Y., Rahul, V., Traina, S.J., Chalmers, J.J., “A fourier-transform infrared spectroscopic analysis of organic matter degradation in a bench-scale solid substance fermentation(composting) system”, Biotechnology and Bioengineering, Vol. 52, pp. 661-671, 1996.
Wong, J.W.C., Fang, M., Li, G.X., “Feasiiibility of using coal ash residues as co-composting materials for sewage sludge”, Environmental Technology, Vol. 18, pp.563-568, 1997.
Zorpas, A.A., Constantinides, T., Vlyssides, A.G., Haralambous, I., Loizidou, M., “Heavy metal uptake by natural zeolite and metals partitioning in sewage sludge compost”, Bioresource Technology, Vol. 72, pp. 113-119, 2000.
Zorpas, A.A., Kapetanios, E., Zorpas, G., Karlis, P., Vlyssides, A., Haralambous, I., Loizidou, M., “Compost produced from organic fraction of municipal solid waste, primary stabilized sewage sludge and natural zeolite”, Journal of Hazardous Materials, Vol. 77, pp. 149-159, 2000.
Zorpas, A.A, Vlyssides, A.G., Loizidou, M., “Dewatered anaerobically-stabilized primary sewage sludge composting:metal leachability and uptake by natural clinoptilolite”, Commun. Soil Sci. Plant Anal, Vol. 30, pp.1603-1613,1999.
江康鈺、黃煌竣、黃淑暖,「應用天然沸石於下水污泥堆肥過程吸附攝取重金屬之可行性研究」,第17屆廢棄物處理技術研討會論文集,台北,2002。
芈振明、高忠愛、吳天寶、祁夢藍,「廢棄物處理技術」,科技圖書股份有限公司,台北,1995。
林敬二、林宗義,「儀器分析」,亞美書版股份有限公司,台北,1994。
邱瑞宇、邱春惠、王西華 ,「以粒徑分佈、碳氫比、固定化氮為樹皮堆肥腐熟度指標之碳討」,中國農業化學會誌,Vol. 29, No. 4, pp. 448-455,1991。
洪崑煌、王明光、陳尊賢、賴朝明、何聖賓、李達源,「土壤化學」,國立編譯館,台北,1996。
核研所網站:http://www.aec.gov.tw.
袁紹英,「廢棄物堆肥化過程的微生物作用」,堆肥技術及其利用研討會論文集,pp.67-83,台北,1994。
陸珩,1989,「有機分子光譜分析」,中央圖書出版社,台北,1989。
許正一、黃正介,「污泥土地施用後土壤中可礦化性氮與重金屬含量之變化」,第17屆廢棄物處理技術研討會論文集,台北,2002。
許振宏,「豬糞堆肥之重金屬及有機物化學特性與其於土壤之應用研究」,博士論文,國立台灣大學環境工程學研究所,台北,1999。
張今濃,「添加劑與下水污泥共同堆肥過程重金屬穩定化之評估」,碩士論文,逢甲大學環境工程與科學研究所,台中,2001。
張景雲,「下水污泥油煤減壓脫水處理及回收有機資材之研究」,碩士論文,國立中央大學環境工程研究所,中壢,1999。
歐陽嶠暉,「都市污水處理場之污泥處理與資源化再利用之研究」,內政部營建署委託研究計畫,1998。
臺北市政府工務局衛生下水道工程處網站:http://www.sew.gov.twM,2002。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top