1.P. Henry Mueller著,葉英俊編譯,授信風險管理,台北:財團法人金融人員研究訓練中心,1994,頁31-34
2.中央銀行經濟研究處編,”本國一般銀行放款餘額”,金融統計月報,2000年10月,頁85-86
3.李俊毅,應用灰色預測理論與類神經網路於企業財務危機 預警模式之研究,義守大學管理科學研究所,19994.呂美慧,銀行授信評等模式---Logistic Regression 之應用,國立政治大學金融學系碩士論文,20005.周文賢著,多變量統計分析-SAS/STAT 使用方法,台北:智勝書局,2001,頁 5-32
6.郭敏華著,債信評等,台北:智勝出版社,2000,頁193-254
7.郭怡萍,銀行業信用評等模式之建構,國立台灣大學商學研究所,19988.財團法人金融人員研究訓練中心編,消費者小額信用貸款之銀行授信實務概要,台北:財團法人金融人員研究訓練中心,1999,頁185-190
10.張永豪,銀行信用評等─新銀行之實證分析,朝陽大學財務金融系碩士論文,199911.黃小玉,銀行放款信用評估模式之研究--最佳模式之選擇,淡江大學管理科學研究所碩士論文,198912.黃登源著,應用迴歸分析,台北:華泰文化事業公司,1998,頁294-320
13.葉怡成編著,類神經網路模式應用與實作,台北:儒林圖書,1993,頁4-1~4-44
14.陳文賢著,管理科學--作業研究與數量方法,台北:三民書局,1987,頁71-101
15.簡安泰,消費者信用評分制度之研究,政大企研所碩士論文,197716.謝維正,台灣股票上市公司信用評等區別模式之探討,國立交通大學管理科學研究所碩士論文,198717.鄭瑞楠,財務分析在銀行授信決策上的應用之研究,國立東華大學企業管理學系碩士論文,199818.龐欽元,農業行庫授信風險評估模式之研究,國立中興大學農業經濟學系碩士論文,199919.Altman EI., “Corporate distress diagnosis : comparisions using linear descriminant analysisi and neural networks(the Italian experience),” Journal of Banking and Finance, 18,1994, 524-529.
20.Abdel-Khalik AR, El-Sheshai KM, “Information choice and utilization in an experiment on default prediction,” Journal of Accounting Research, Autumn 1980, 325-342.
21.Carter. C. and Catlett. J., “Assessing credit card applications using machine learning, ” IEEE Expert, fall , 1987, 71-79.
22.Coats PK,Fant LF., “Recognizing financial distress patterns using a neural network tool,” Financial Management, Autumn 1993, 142-155.
23.Coakley J. R. and Brown C. E., “Artificial Neural Networks in Accounting and Finance: Modeling Issues,” International Journal Intelligent System in Accounting Finance Management, 9, 2000 , 119-114.
24.Coffman, J. Y., “The proper role of tree analysis in forecasting the risk behavior of borrowers,” MDS Reports 3,4,7 and 9 Management Decision Systems, Atlanta, 1986.
25.David West., “Neural network credit scoring models,” Computer & Operations Research, 27 , 2000 , 1131-1152
26.Davis, D. B., “Artificial intelligence goes to work,” High Technol, Apr, 1987, 16-17.
27.Davis RH, Edelman DB, Gammerman AJ., “Machine learning algorithms for credit-card application,” IMA Journal of Mathematics Applied in Business and Industry, 4, 1992, 43-51
28.Desai VS, Crook JN, Overstreet GA, “A comparison of neural networks and linear scoring models in the credit union environment,” European Journal of Operational Research, 95, 1996, 24-37
29.Durand, D., “Risk Elements in Consumer Instalment Financing,” New York: National Bureau of Economic Research, 1941.
30.Fitzpatrick, D. B., “An analysis of bank credit card profit,” J. BankRes, 7, 1976,199-205.
31.Grablowsky, B. J. and Talley, W. K., “Probit and discriminant functions for classifying credit applicants: a comparison,” Journal Economic Business, 33, 1981, 254-261.
32.Hand D.J. and Henley W.E., “Statistical Classification Methods in Consumer Credit Scoring: A Review,” J.R. Statist. Soc. A., 160. Part3 , 1997, 523-541.
33.Henley, W. E.,“Statistical aspects of credit scoring,” PhD Thesis, The Open University, Milton Keynes, 1995.
34.Jensen H.L., Robert R. Trippi, Efraim Turban , Neural networks in finance and investing : using artificial intelligence to improve real-world performance, eChicago, Ill. : Probus Pub., 1993.
35.Jensen H.L., “Using neural networks for credit scoring,” Managerial Finance, 18, 1992, 15-26.
36.Kolesat, P. and Showers, J. L., “A robust credit screening model using categorical data,” Management Science, 31, 1985, 123-133.
37.Leonard, K. J., “Detecting credit card fraud using expert systems,” Comput. Indstrl Engng,25, 1993a, 103-106.
38.Leonard, K. J., “A fraud-alert model for credit cards during the authorization process,” IMA J. Math Appl, Bus Indstry,5, 1993b, 57-62.
39.Lucas, A., “Updating scoredcards:removing the mystique. In Credit Scoring and Credit Control(eds L. C. Thomas, J. N. Crook and D. B. Edelman),” Oxford: Clarendon, 1992,180-197
40.George Curnow, Gary Kochman, Steven Meester, Debashish Sarkar, Keith Wilton, “Automating Credit and Collections Decisions at AT&T Capital Corporation,” Management Science, January-February 1997, 29-52.
41.Makowski, P., “Credit scoring branches out,” Credit World, 75, 1985,30-37.
42.Oliver, R. M., “The economic value of score-splitting accept-reject policies,” IMA J. Math. Appl. Bs. Indstry, 4, 1992, 35-41.
43.Orgler,Y.E., “A credit scoring model for commercial loans,” J. Money Credit Bank, Nov, 1970, 435-445.
44.Piramuthu S, “Financial credit risk evaluation with neural and neurofuzzy systems,” European Journal of Operational Research, 112, 1999, 310-321.
45.Quinlan JR., “Simplifying decision trees,” International Journal of Man-Machine Studies, 27 , 1987,221-234.
46.Saaty T.L.,The Analytic Hierarchy Process, New York:McGraw-Hill,1980.
47.Shanker M, Hu MY, Hung MS, “Effect of data standardization on neural network training,” Omega, international Journal of Management Science, 24,No. 4, 1996 , 385-397.
48.Showers, J. L. and Chakrin, L. M., “Reducing uncollectable revenue from residential telephone customers,” Interfaces, 11, 1981, 21-31.
49.Tam KY., Kiang MY. , “Managerial applications of neural network : the case of bank failure predictions,” Management Science, 1992, 38, 926-947.
50.Zocco,D.P., “A framework for expert systems in bank loan management,” J. Commrcl Bank Lend, 67, 1985, 47-54.