|
References 1. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics”, Nat. Mater. 8 (2009) 568 2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies ”, Science 314 (2006) 977 3. N. M. Litchinitser and V. M. Shalaev, “Metamaterials: transforming theory into reality”, J. Opt. Soc. Am. B 26 (2009) B161 4. Y. Saotome, and H. Iwazaki, “Superplastic backward microextrusion of microparts for micro-electro-mechanical systems”, J. Mater. Process. Technol. 119 (2001) 307 5. B. Redding , S. Shi, T. Creazzo, E. Marchena, and D.W. Prather, “Design and characterization of silicon nanocrystal microgear resonator”, Phot. Nano. Fund. Appl. 8 (2010) 177 6. Kentaro Oda, Hidekuni Takao, Kyohei Terao, Takaaki Suzuki, Fusao Shimokawa, Ichirou Ishimaru, Fumikazu Oohira, “Vertical comb-drive MEMS mirror with sensing function for phase-shift device”, Sens. Actuators, A 181 (2012) 61 7. H. Liu, and T.J. Webster, “Nanomedicine for implants: a review of studies and necessary experimental tools”, Biomaterials 28 (2007) 354 8. Elisabeth Engel, Alexandra Michiardi, Melba Navarro, Damien Lacroix, and Josep A. Planell, “Nanotechnology in regenerative medicine: the materials side”, Trends Biotechnol. 26 (2007) 39 9. H. Becker, and C. Cartner, “Polymer microfabrication technologies for microfluidic systems”, Anal. Bioanal. Chem. 390 (2008) 89 10. D.R. Barbero, M.S.M. Saifullah, P. Hoffmann, H.J. Mathieu, D. Anderson, G.A.C. Jones, M.E. Welland, and U. Steiner, “High resolution nanoimprinting with a robust and reusable polymer mold”, Adv. Funct. Mater. 17 (2007) 2419 11. H, Lorenz , M. Despont , N. Fahrni, N. LaBianca, P. Renaud and P. Vettiger, “SU-8: a low-cost negative resist for MEMS”, J. Micromech. Microeng. 7(1997) 121 12 B. Lee, K.J. Cha, and T.H. Kwon, “Fabrication of polymer micro/nano-hybrid lens array by microstructured anodic aluminum oxide (AAO) mold”, Microelectron. Eng. 86 (2009) 857 13. E. Kukharenka, M.M. Farooqui, L. Grigore, M. Kraft, and N. Hollinshead, “Electroplating moulds using dry film thick negative photoresist”, J. Micromech. Microeng. 13 (2003) S67 14. W.L. Johnson, “Bulk glass-forming metallic alloys: science and technology”, MRS Bull. 24 (1999) 42 15. G. Kumar, H.X. Tang, and J. Schroers, “Nanomoulding with amorphous metals”, Nature 457 (2009) 868 16. G. Kumar, A. Desai, and J. Schroers, “Bulk Metallic Glass: The Smaller the Better”, Adv. Mater. 23 (2011) 461 17. C.T. Pan, T.T. Wu, M.F. Chen, Y.C. Chang, C.J. Lee, and J.C. Huang, “Hot embossing of micro-lens array on bulk metallic glass”, Sens. Actuators, A 141 (2008) 422 18. Mamoru Ishida, Hideki Takeda, Nobuyuki Nishiyama, Kazuhiko Kita, Yukiharu Shimizu, Yasunori Saotome, and Akihisa Inoue, “Wear resistivity of super-precision microgear made of Ni-based metallic glass”, Mater. Sci. Eng. A 449 (2007) 149 19. J.J. He, N. Li, N. Tang, X.Y. Wang, C. Zhang, and L. Liu, “The precision replication of a microchannel mould by hot-embossing a Zr-based bulk metallic glass”, Intermetallics 21(2012) 50 20. C. Suryanarayana, and A. Inoue, “Bulk Metallic Glasses”, CRC, Florida, 2010 21. H.S. Chou, J.C. Huang, and L.W. Chang, “Mechanical properties of ZrCuTi thin film metallic glass with high content of immiscible tantalum”, Surf. Coat. Technol. 205 (2010) 587 22. F.X. Liu, P.K. Liaw, W.H. Jiang, C.L. Chiang, Y.F. Gao, Y.F. Guan, J.P. Chu and, P.D. Rack, “Fatigue-resistance enhancements by glass-forming metallic films” Mater. Sci. Eng. A 468 (2007) 246 23. X. Liu, F.Q. Yang, Y.F. Gao, W.H. Jiang, Y.F. Guan, P.D. Rack, O. Sergic and, P.K. Liaw, “Micro-scratch study of a magnetron-sputtered Zr-based metallic-glass film”, Surf. Coat. Technol. 203 (2009) 3480 24. W.H. Wang, C. Dong, and C.H. Shek, “Bulk metallic glasses”, Mater. Sci. Eng. R 44 (2004) 45 25. S. Takeuchi and K. Edagawa, “Atomistic simulation and modeling of localized shear deformation in metallic glasses”, Prog. Mater. Sci. 56 (2011) 785 26. J.W. Taylor, and M.A. Winnik, “Functional Latex and Thermoset Latex Films”, JCT Res. 1 (2004) 163 27. H. Claesson, C. Scheurer, E. Malmström, M. Johansson, A. Hult , W. Paulus, and R. Schwalm, “Semi-crystalline thermoset resins: tailoring rheological properties in melt using comb structures with crystalline grafts”, Prog. Org. Coat. 49 (2004) 13 28. L. Zhang, R. Li, J. Wang, H. Zhang, N. Hua, and T. Zhang, “The influence of Ag substitution for Cu on glass-forming ability and thermal properties of Mg-based bulk metallic glasses”, J. Non-Cysr Solids 358 (2012) 425 29. T. Egami, S. J. Poon, Z. Zhang, and V. Keppens, “Glass transition in metallic glasses: A microscopic model of topological fluctuations in the bonding network”, Phys. Rev. B 76 (2007) 024203 30. Z. Zhu, H. Zhang, Z. Hu, W. Zhang, and A. Ioune, “Ta-particulate reinforced Zr-based bulk metallic glass matrix composite with tensile plasticity”, Sripta Mater. 62 (2010) 278 31. W.H. Wang, “Role of minor addition in the formation and proprieties of bulk metallic glasses”, Prog. Mater. Sci. 52 (2007) 540 32. J.S.C. Jang, S.R. Jian, C.F. Chang, L.J. Chang, Y.C. Huang, T.H. Li, J.C Huang, C.T. Liu, “Thermal and mechanical properties of the Zr53Cu30Ni9Al8 based bulk metallic glass microalloyed with silicon”, J. Alloys Compd. 478 (2009) 215 33. B. Yao, B.Z. Ding, A.M. Wang, and Z.Q. Hu, “Effect of pressure on the crystallization of amorphous Fe–Mo–Si–B alloy with diffusion reaction at its surface”, Appl. Phys. Lett. 67 (1995) 2290 34. V. Ponnambalam, S.J. Poon, and G.J. Shiflet, “Fe-based bulk metallic glasses with diameter thickness larger than one centimeter” J. Mater. Res. 19 (2004) 1320 35. C. Ma, H. Soejima, K. Amiya, N. Nishiyama, and A. Inoue, “New Ti-Based Bulk Glassy Alloys with High Glass-Forming Ability and Superior Mechanical Properties” Mater. Trans. JIM 45 (2004) 3223 36. Z. Liu, R. Li, H.Wang, and T. Zhang, “Nitrogen-doping effect on glass formation and primary phase selection in Cu–Zr–Al alloys”, J. Alloys Compd. 569 (2011) 5033 37. W. H. Wang, H.Y. Bai, “Carbon induced bulk amorphous matrix composite”, Mater. Lett. 43 59 (2000) 59 38. H. H. Liebermann, “Nitrogen as an alloying element in some metallic glasses”, J. Mater. Sci 17 (1982) 1195 39. J. Kramer, “Der amorphe Zustand der Metalle”, Z. Phys. 106 (1937) 675 40. J. Kramer, “Der Übergang des amorphen Metalls in den kristallinen Zustand”, Z. Phys. 111 (1938) 409 41. A. Bremer, D.E. Couch and E.K. Williams, “Electrodeposition of alloys of phosphorus with nickel or cobalt”, J. Res. Natl. Bur. Stand. 44 (1950) 109 42. W. Klement, R. H. Wilens and P. Duwez, “Non-crystalline Structure in Solidified Gold–Silicon Alloys”, Nature 187 (1960) 869 43. M.J. Bloch, “Effet de l'irradiation par les neutrons sur les alliages uranium-fer a faible teneur en fer”, J. Nucl. Mater. 6 (1962) 203 44. S. Mader, “Metastable Alloy Films”, J. Vac. Sci. Technol. 2 (1965) 35. 45. R. B. Schwarz and W. L. Johnson, “Formation of an Amorphous Alloy by Solid-State Reaction of the Pure Polycrystalline Metals” Phys. Rev. Lett. 51(1983) 415 46. W.H. Kui, A.L. Greer, D. Turnbull, “Formation of bulk metallic glass by fluxing”, Appl. Phys. Lett. 45 (1984) 615 47. A. Inoue, T. Zhang, and T. Masumoto, “Al-La-Ni Amorphous Alloys with a Wide Supercooled Liquid Region”, Mater. Trans. JIM 30 (1989) 965 48. A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Mater. 48 (2000) 279 49. Y.Q. Cheng and E. Ma, “Atomic-level structure and structure–property relationship in metallic glasses”, Prog. Mater. Sci. 56 (2011) 379 50. A. Inoue, “Bulk Amorphous Alloys Practical Characteristics and Applications Institute for Material Research”, Tohoku University, Japan, 1999 51. M. Miller, P. Liaw “Bulk Metallic Glasses: An Overview”, Springer, New York, 2008 52. R. Busch, “The thermophysical properties of bulk metallic glass-forming liquids”, J. Miner. Met. Mater. Soc. 52 (2000) 39 53. R. Busch, J. Schroers, and W.H. Wang, “Thermodynamics and kinetics of bulk metallic glass”, MRS Bull. 32 (2007) 620 54. R. Busch, Y.J. Kim, and W.L. Johnson, “Thermodynamics and kinetics of the undercooled liquid and the glass-transition of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy”, J. Appl. Phys. 77 (1995) 4039 55. D. Turnbull, “Under what conditions can a glass be formed”, Contemp. Phys. 10 (1969) 473 56. W.L. Johnson, K. Samwer, “A universal criterion for plastic yielding of metallic glasses with a (T/T-g)(2/3) temperature dependence”, Phys. Rev. Lett. 95 (2005) 195501 57. B. Yang, C.T. Liu, and T.G. Nieh, “Unified equation for the strength of bulk metallic glasses”, Appl. Phys. Lett. 88 (2006) 221911 58. S.G. Mayr, “Relaxation kinetics and mechanical stability of metallic glasses and supercooled melts”, Phys. Rev. B79 (2009) 060201 59. Y. H. Liu, C. T. Liu, W. H. Wang, A. Inoue, T. Sakurai, and M. W. Chen, “Thermodynamic Origins of Shear Band Formation and the Universal Scaling Law of Metallic Glass Strength”, Phys. Rev. Lett. 103 (2009) 065504 60. R. Behrisch Ed., "Sputtering by particle bombardment", Applied Physics, 47, Berlin, Springer (1981) 61. P. D. Toensend, and J. C. Kelly, “Ion implantation: Sputtering and their applications” , Academic Press, (1976) 62. M. Ohring Ed., “The materials science of thin films”, Academic Press, London, UK, (1992) Chap.3 123-124 63. S. PalDey, S.C. Deevi, “Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review”, Mater. Sci. Eng. A 342 (2003) 58 64. H.A. Jehn, S. Hofmann, V.E. Rückborn, W.D. Münz, “Morphology and properties of sputtered (Ti, Al)N layers on high-speed steel substrate as a function of deposition temperature and sputtering atmosphere”, J. Vac. Sci. Technol. 6 (1986) 2701 65. L.A. Donohue, W.D. Münz, D.B. Lewis, J. Cawley, T. Hurkmans, T. Trinh, I. Petrov, J.E. Greene, “Large-scale fabrication of hard superlattice thin films by combined steered arc evaporation and unbalanced magnetron sputtering”, Surf. Coat. Technol. 93 (1997) 69 66. P.C. Jindal, A.T. Santhanam, U. Schleinkofer, and A.F. Shuster, “Performance of PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning”, Int. J. Refract. Met. Hard Mat. 17 (1999) 163 67. H.G. Prengel, A.T. Santhanam, R.M. Penich, P.C. Jindal, and K.H. Wendt “Advanced PVD-TiAlN coatings on carbide and cermet cutting tools”, Surf. Coat. Technol. 94 (1997) 597 68 H. Bartzsch, P. Frach, and K. Goedicke, “Anode effects on energetic particle bombardment of the substrate in pulsed magnetron sputtering”, Surf. Coat. Technol. 132 (200) 244 69. R.D. Arnell, P.J. Kelly, and J.W. Bradley, “Recent developments in pulsed magnetron sputtering”, Surf. Coat. Technol. 188 (2004) 158 70. J. Sellers, “Asymmetric bipolar pulsed DC: the enabling technology for reactive PVD”, Surf. Coat. Technol. 98 (1998) 1245 71. A. Inoue, T. Zhang, and T. Masumoto, “Preparation of Bulky Amorphous Zr-Al-Co-Ni-Cu Alloys by Copper Mold Casting and Their Thermal and Mechanical Properties”, Mater. Trans. JIM 36 (1995) 391 72. T. Zhang and A. Inoue, “Thermal and Mechanical Properties of Ti-Ni-Cu-Sn Amorphous Alloys with a Wide Supercooled Liquid Region before Crystallization”, Mater. Trans. JIM 39 (1998) 1001 73. T. Zhang and A. Inoue, “New Bulk Glassy Ni-Based Alloys with High Strength of 3000 MPa”, Mater. Trans. 43 (2002) 708 74. W. Zhang and A. Inoue, “Effects of Ti on the Thermal Stability and Glass-Forming Ability of Ni-Nb Glassy Alloy”, Mater. Trans. 43 (2002) 2342 75. A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, “High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems”, Acta Mater. 49 (2001)2645 76. A. Inoue, “Stabilization and high strain-rate superplasticity of metallic supercooled liquid”, Mater. Sci. Eng. A 267 (1999) 171 77. D. Arias and J.P. Abriata, “Cu-Zr (Copper-Zirconium)”, Bull. Alloy Phase Diagr, 11 (1990) 453 78. P. Yu, Y. Bai, and W.H. Wang, “Superior glass-forming ability of CuZr alloys from minor additions”, J. Mater. Res. 21 (2006) 1674 79. Japan Institute of Metals, “Metals Databook”, Maruzen, Tokyo, 1983 80. F.R. de Boer, R. Boom, W.C.M Mattens, A.R. Miedema, and A.K. Niessen, “ Cohesion in Metals: transition metal alloys”, Amsterdam, North-Holland, 1988 81. F. Qiu, H. Wang, T. Liu, and Q. Jiang, “Influence of Al content on the microstructure and mechanical property of the (Zr2Cu)100 − xAlx alloys” J. Alloys Compd. 468 (2009) 195 82. P. Yu, H.Y. Bai, and W.H. Wang, “Superior glass-forming ability of CuZr alloys from minor additions”, J. Mater. Res. 21 (2006) 1674 83. A. Inoue and W. Zhang, “Formation, Thermal Stability and Mechanical Properties of Cu–Zr–Al Bulk Glassy Alloys”, Mater. Trans. 43 (2002) 2921 84. Y.Q. Cheng , E. Ma , H.W. Sheng, “Atomic level structure in multicomponent bulk metallic glass”, Phys. Rev. Lett. 102 (2009) 245501 85. Q. S. Zhang, W. Zhang, and A. Inoue, “New Cu–Zr-based bulk metallic glasses with large diameters of up to 1.5 cm”, Scr. Mater. 55 (2006) 711 86. W. Zhang, Q. Zhang, C. Qin, and A. Inoue, “Synthesis and properties of Cu–Zr– Ag–Al glassy alloys with high glass-forming ability”, Mater. Sci. Eng. A 148 (2008) 92 87. Q. S. Zhang, W. Zhang, and A. Inoue, “Preparation of Cu36 Zr48Ag8A8 Bulk Metallic Glass with a Diameter of 25 mm by Copper Mold Casting”, Mater. Trans. 48 (2007) 629 88. D.G. Kim, T.Y. Seong, and Y J. Baik, “Oxidation behavior of TiN/AlN multilayer films prepared by ion beam-assisted deposition”, Thin Solid Films 397 (2001) 203 89. C.M. Cheng and Y.T. Cheng, “On the initial unloading slope in indentation of elastic-plastic solids by an indenter with an axisymmetric smooth profile”, Appl. Phys. Lett. 71 (1997) 2623 90. W.C. Oliver, “Alternative technique for analyzing instrumented indentation data”, J. Mater. Res. 16 (2001) 3202 91. .W.C. Oliver, G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, J. Matter. Res. 7 (1992) 1564 92. M.J. Laugier, “adhesion of TiC and TiN coatings prepared by chemical vapour deposition on WC-Co-based cemented carbides”, J. Mater. Sci. 21 (1986) 2269 93. P. R. Chalker, S. J. Bull and D. S. Rickerby, “A review of the methods for the evaluation of coating-substrate adhesion”, Mater. Sci. Eng. A 140 (1991) 583 94. G.W.H. Hohne, W.F. Hemminger, and H.J. Flasmmersheim, “Differential Scanning Calorimetry”, Springer, Berlin, 2003 95. J.M. Bennett and L. Mattsson, “Introduction to Surface Roughness and Scattering”, Optical Society of America, Washington, D. C., 1989 96. T. R. Thomas, “Rough Surfaces” , Imperial College Press, London, 1999 97. D. B. Williams, C. Barry Carter, “Transmission Electron Microscopy”, 2nd ed. Plenum Press, New York, 2009 98. R. Chang, “Chemistry”, McGraw-Hill, New York, 2004 99. J.I. Goldstein, “Scanning Electron Microscopy and X-ray Microanalysis”, 3rd ed. Plenum Press, New York, 2003 100. A. Hirata, T. Hirotsu, T. Ohkubo, N. Takana, and T.G. Nieh, “Local atomic structure of Pd–Ni–P bulk metallic glass examined by high-resolution electron microscopy and electron diffraction”, Intermetallics 14 (2006) 903 101. M. Shapaan, A. Bárdos , L.K. Varga, J. Lendvai. “Thermal stability and glass forming ability of cast iron–phosphorus amorphous alloys” Mater. Sic. Eng. A 366 (2004) 6 102. N. Jakse, A. Pasturel, “Local order of liquid and supercooled zirconium by ab initio molecular dynamics”, Phys. Rev. Lett. 291 (003) 195501. 103. H.M. Tung, J.H. Huang , D.G. Tsai , C.F. Ai , G.P. Yu, “Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment”, Mater. Sci. Eng. A 500 (2009) 104 104. A. Guinier, “X-Ray diffraction in crystals, imperfect crystals and amorphous bodies”, Dover, New York, 1994. 105. A. Caron, R. Wunderlich, D.V. Louzquine-Luzgin, G. Xie, A. Inoue, and H.J. Fecht, “Influence of minor aluminum concentration changes in zirconium-based bulk metallic glasses on the elastic, anelastic,and plastic properties”, Acta Mater. 58 (2010) 2004 106. T.C. Hufnagel and S, Brennan, “Short- and medium-range order in (Zr70Cu20Ni10)90-xTaxAl10 bulk amorphous alloys”, Phys. Rev. B 67 (2003) 014203 107. F.Zeng, Y.Gao, L.Li, D.M. Li, and F. Pan, “Elastic modulus and hardness of Cu–Ta amorphous films”, J. Alloys Compd. 389 (2005) 75. 108. M.M. Trexler and N.N. Thadhami, “Mechanical properties of bulk metallic glasses”, Prog. Mater. Sci. 55 (2010) 759 109. F. Attar and T. Johannesson, “Adhesion evaluation of thin ceramic coatings on tool steel using the scratch testing technique”, Surf. Coat. Technol. 78 (1996) 87. 110. P.J. Burnett and D.S. Rickerby, “The relationship between hardness and scratch adhession” Thin Solid Films 154 (1987) 403. 111. B.R. Lawn, A.G. Evans, and D.B. Marshall, “Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System” J. Am. Ceram. Soc. 63 (1980) 574 112. S. Zhang, D. Sun, Y.Q. Fu and H. Du, “Effect of sputtering target power on microstructure and mechanical properties of nanocomposite nc-TiN/a-SiNx thin films”, Thin Solid Film 447–448 (2004) 462. 113. D.B. Miracle, D.V. Louzguine-Luzgin, L.V. Louzguina-Luzgina, and A. Inoue, “An assessment of binary metallic glasses-- correlations between structure, glass forming ability and stability”, Int. Mater. Rev. 55 (2010) 218 114. A.Y. Liu, and M.L. Cohen, “Prediction of New Low Compressibility Solids”, Science 245 (1989) 841 115. S. Takeuchi and K. Edagawa, “Atomistic simulation and modeling of localized shear deformation in metallic glasses”, Prog. Mater. Sci. 56 (2011) 785 116. T. Egami, “Atomic level stresses”, Prog. Mater. Sci. 56 (2011) 637 117. P. Guan, M.W. Chen, and T. Egami, “Stress-Temperature Scaling for Steady-State Flow in Metallic Glasses”, Phys. Rev. Lett 104 (2010) 205701. 118. Y. Suzuki, J. Haimovich, T. Egami, “Bond-orientational anisotropy in metallic glasses observed by x-ray diffraction”, Phys. Rev. Lett B 35 (1987) 2162 119. C.N. Kuo, H.M. Chen, X.H. Du, and J.C. Huang, “Flow serrations and fracture morphologies of Cu-based bulk metallic glasses in energy release perspective”, Intermetallics 18 (2010) 1648 120. J.J. Lewandowski, and A.L. Greer, Nat. Mater. 5 (2006) 15 121. H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, and E. Ma, “Temperature rise at shear bands in metallic glasses”, Nature 439 (2006) 419 122. W.L. Johnson, M.D. Demetriou, J.S. Harmon, M.L. Lind, and K. Samwer, “Rheology and Ultrasonic Properties of Metallic Glass-Forming Liquids: A Potential Energy Landscape Perspective”, MRS Bull. 32 (2007) 644
|