跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/15 17:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梁文凡
研究生(外文):Wen-fan Liang
論文名稱:應用共振腔微擾法研究鐵基奈米複合材料之微波特性
論文名稱(外文):Permittivity and Permeability Iron-based Studies of Nanocrystalline Composite Materials by the Cavity Perturbation Method
指導教授:楊瑞彬楊瑞彬引用關係
指導教授(外文):Ruey-bin Yang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:航太與系統工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:71
中文關鍵詞:介電常數共振腔導磁率
外文關鍵詞:resonant cavitypermeabilitypermittivity
相關次數:
  • 被引用被引用:5
  • 點閱點閱:324
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
共振腔微擾法是利用微波共振電路量測封閉矩形或圓形波導管內所產生之共振頻率偏移與腔體內品質因子Q值變化,藉以計算塊材或薄膜之電磁參數。本論文藉由改變鐵氟龍、RT/duriod標準試片尺寸與長度,對共振腔微擾法做電磁量測精準度分析,並利用Ansoft HFSS電磁分析軟體對開有溝槽之共振腔做數值實驗模擬與公式驗證。
本研究以環氧樹脂為基材,依照不同重量百分比之微米級羰基鐵粉與奈米級氧化鐵、導電碳黑粉末混合,製備微米/奈米複合材料,利用共振腔微擾法量測該複合材料於X-Band(8 ~ 12.4 GHz)頻段之電磁參數,並與同樣製備試片之同軸管法做比較。結果顯示無論是介電常數或導磁率之實部與虛部,共振腔微擾法與同軸管法皆相當吻合,其中並探討在高介電材料產生相對誤差之主要原因。本研究之成果可用於精確與簡便地量測在微波頻段下,新型電磁材料之頻率響應,有助於高頻微波材料與微波元件之設計。
Resonant cavity perturbation method is a technique to obtain the complex permittivity and permeability of bulk materials or thin films at microwave frequencies. This method uses a microwave resonant circuit to measure the shift of resonant frequency and the change of quality factor in a closed rectangular or circular waveguide. In this study, the accuracy of the resonant cavity perturbation is evaluated by changing the samples sizes and lengths of Teflon and RT/duroid. To verify the formulae used in the calculation of the complex permittivity and permeability, a numerical simulation is also carried out by using Ansoft HFSS to analyze the electromagnetic disturbance in a rectangular waveguide with an open slot for the test samples.
Microwave absorbing composites are fabricated by mixing epoxy resin with carbonyl iron, nano-Fe3O4, and conductive carbon black for different weight ratios and then molded in rod shapes. Using the resonant perturbation method, these microwave absorbing composites are measured in X-band and compared with the transmission/reflection method by using a coaxial line. The results show either complex permittivity or permeability of these two methods are rather consistent. The discrepancy becomes large for high permittivity materials. This research provides a simple and reliable method to measure the electromagnetic properties of materials in the microwave frequency range and may benefit the development of new microwave materials and microwave devices.
致謝 i
中文摘要 ii
英文摘要 iii
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1前言 1
1.2 研究動機 1
1.3 內容簡述 2
第二章 文獻回顧 4
2.1 材料電磁特性 4
2.1.1 介電常數(Permittivity) 4
2.1.2 導磁率(Permeability) 5
2.2材料電磁特性量測方法 6
2.2.1 平行板法(Parallel Plate) 7
2.2.2 同軸探針法(Coaxial Probe) 8
2.2.3傳輸/反射法(Transmission /Reflection) 10
2.2.4 自由空間法(Free-Space) 13
2.2.5 共振腔微擾法(Cavity Perturbation) 15
第三章 微波共振腔基本理論 17
3.1 微波共振腔基本理論推導 17
3.1.1 mode 18
3.1.2 品質因數Q 20
3.1.3 複介電常數量測公式推導 22
3.1.4 複導磁率量測公式推導 24
第四章 實驗流程 26
4.1 奈米複合材料製作流程 26
4.1.1 吸波試片製作流程 26
4.1.2不同重量百分比之複合材料 28
4.2 實驗設備 29
4.2.1向量網路分析儀 30
4.2.2 共振腔 31
4.2.3測量流程 33
4.3 電磁參數量測精準度 38
4.3.1 介電常數之量測精準度 38
4.3.2 導磁率之精準度 41
4.4 尺寸限制下之複介電常數修正 43
第五章 HFSS模擬微波共振腔 46
5.1 HFSS模擬和實驗值驗證 47
5.2 HFSS數值實驗模擬 49
第六章 實驗結果與討論 52
6.1 複合材料電磁參數量測結果討論 52
6.2 實驗結果與同軸管法比較 64
第七章 結論 70
參考文獻 72
附錄A 76
附錄B 77
[1] 陳文照,曾春風,遊信和。「材料科學工程」。高立圖書有限公司,頁數767-776,民國88年,初版。
[2] 邢麗英。「隱形材料」。新文京開發出版股份有限公司,頁數48-53,民國95年,初版。
[3] L. C. Shen, M. Herzl, Z. Yu-Xing, and S. Xian-di, "Analysis of the Parallel-Disk Sample Holder for Dielectric Permittivity Measurement," Geoscience and Remote Sensing, IEEE Transactions on, vol. GE-25, pp. 534-540, 1987.

[4] N. L. Buck, "Calibration of dielectric constant probes using salt solutions of unknown conductivity," Instrumentation and Measurement, IEEE Transactions on, vol. 45, pp. 84-88, 1996.
[5] S. Darayan, C. Liu, L. C. Shen, and D. Shattuck, "Measurement of electrical properties of contaminated soil1," Geophysical Prospecting, vol. 46, pp. 477-488, 1998.
[6] J. Baker-Jarvis, E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," Microwave Theory and Techniques, IEEE Transactions on, vol. 38, pp. 1096-1103, 1990.
[7]K. T. M. L. P. L. M. Hajian, "Measurements of complex permittivity with waveguide resonator using perturbation technique," Microwave and Optical Technology Letters, vol. 21, pp. 269-272, 1999.
[8] Agilent Technologies, "Agilent Basics of Measuring the Dielectric properties of Materials,Agilent Literature Number5989-2589EN, June 26, 2006.
[9] J. Zhang, A. Tombak, J. P. Maria, B. Boyette, G. T. Stauf, A. I. Kingon, and A. Mortazawi, "Microwave characterization of thin film BST material using a simple measurement technique," in Microwave Symposium Digest, 2002 IEEE MTT-S International, pp. 1201-1204, 2002.
[10] S. Darayan, C. Liu, L. C. Shen, and D. Shattuck, "Measurement of electrical properties of contaminated soil1," Geophysical Prospecting, vol. 46, pp. 477-488, 1998.
[11] Agilent Technologies, "Agilent Technologies Impedance Measurement Handbook, "Agilent Literature Number5950-3000, Auguest 1, 2006.
[12] D. Berube, F. M. Ghannouchi, and P. Savard, "A comparative study of four open-ended coaxial probe models for permittivity measurements of lossy dielectric/biological materials at microwave frequencies," Microwave Theory and Techniques, IEEE Transactions on, vol. 44, pp. 1928-1934, 1996.
[13] A. M. Nicolson and G. F. Ross, "Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques," Instrumentation and Measurement, IEEE Transactions on, vol. 19, pp. 377-382, 1970.
[14] W. B. Weir, "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proceedings of the IEEE, vol. 62, pp. 33-36, 1974.
[15] P. Singh, V. K. Babbar, A. Razdan, S. L. Srivastava, and R. K. Puri, "Complex permeability and permittivity, and microwave absorption studies of Ca(CoTi)xFe12-2xO19 hexaferrite composites in X-band microwave frequencies," Materials Science and Engineering B, vol. 67, pp. 132-138, 1999.
[16] S.-S. Kim, S.-T. Kim, J.-M. Ahn, and K.-H. Kim, "Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollow ceramic microspheres of low density," Journal of Magnetism and Magnetic Materials, vol. 271, pp. 39-45, 2004.
[17] V. V. Varadan, R. D. Hollinger, D. K. Ghodgaonkar, and V. K. Varadan, "Free-space, broadband measurements of high-temperature, complex dielectric properties at microwave frequencies," Instrumentation and Measurement, IEEE Transactions on, vol. 40, pp. 842-846, 1991.
[18] ASTM D2520-01, "Standard Test Methods for Complex Permittivity (Dielectric Constant) of Solid Electrical Insulating Materials at Microwave Frequencies and Temperatures to 1650°C," An American National Standard, 2007.
[19] 郭仁財。「微波工程」。高立圖書有限公司,頁數363-392,民國91年,二版。
[20] 郭塗註,黃錦華。「基本電學下」。華興書局,頁數152-154,民國88年,初版。
[21] 橋本修。「次世代電波吸收體技術應用展開」。CMC株式會社,頁數251-270,民國92年,初版。
[22] K. T. M. U. Raveendranath, "New cavity perturbation technique for measuring complex permeability of ferrite materials," Microwave and Optical Technology Letters, vol. 18, pp. 241-243, 1998.
[23] L. Mi and M. N. Afsar, "A new cavity perturbation technique for accurate measurement of dielectric parameters," in Microwave Symposium Digest, 2006. IEEE MTT-S International, pp. 1630-1633, 2006.
[24] R. M. Bozorth and D. M. Chapin, "Demagnetizing Factors of Rods," Journal of Applied Physics, vol. 13, pp. 320-326, 1942.
[25] C. Linfeng, C. K. Ong, and B. T. G. Tan, "Amendment of cavity perturbation method for permittivity measurement of extremely low-loss dielectrics," Instrumentation and Measurement, IEEE Transactions on, vol. 48, pp. 1031-1037, 1999.
[26] Y. Yan, A. Sklyuyev, C. Akyel, and P. Ciureanu, "Automatic System to Measure Complex Permittivity and Permeability using Cavity Perturbation Techniques," in Instrumentation and Measurement Technology Conference Proceedings, 2007 IEEE, pp. 1-6, 2007.
[27] A. Verma and D. C. Dube, "Measurement of dielectric parameters of small samples at X-band frequencies by cavity perturbation technique," Instrumentation and Measurement, IEEE Transactions on, vol. 54, pp. 2120-2123, 2005.
[28] S. B. Kumar, H. Hohn, R. Joseph, M. Hajian, L. P. Ligthart, and K. T. Mathew, "Complex permittivity and conductivity of poly aniline at microwave frequencies," Journal of the European Ceramic Society, vol. 21, pp. 2677-2680, 2001.
[29] L. Daiqing, C. E. Free, K. E. G. Pitt, and P. G. Barnwell, "A simple method for accurate loss tangent measurement of dielectrics using a microwave resonant cavity," Microwave and Wireless Components Letters, IEEE, vol. 11, pp. 118-120, 2001.
[30] R. G. Carter, "Accuracy of microwave cavity perturbation measurements," Microwave Theory and Techniques, IEEE Transactions on, vol. 49, pp. 918-923, 2001.
[31] A. Sklyuyev, M. Ciureanu, C. Akyel, P. Ciureanu, D. Menard, and A. Yelon, "Measurement of Complex Permeability of Ferromagnetic Nanowires using Cavity Perturbation Techniques," in Electrical and Computer Engineering, 2006. CCECE ''06. Canadian Conference on, pp. 1486-1489, 2006.
[32] D. C. Dube, M. T. Lanagan, J. H. Kim, and S. J. Jang, "Dielectric measurements on substrate materials at microwave frequencies using a cavity perturbation technique," Journal of Applied Physics, vol. 63, pp. 2466-2468, 1988.
[33] M. Binshen, J. Booske, and R. Cooper, "Extended cavity perturbation technique to determine the complex permittivity of dielectric materials," Microwave Theory and Techniques, IEEE Transactions on, vol. 43, pp. 2633-2636, 1995.
[34] M. Santra and K. U. Limaye, "Estimation of complex permittivity of arbitrary shape and size dielectric samples using cavity measurement technique at microwave frequencies," Microwave Theory and Techniques, IEEE Transactions on, vol. 53, pp. 718-722, 2005.
[35] L. Mi and M. N. Afsar, "Measurement of Dielectric and Magnetic Characteristics of Nickel Ferrite and Strontium Ferrite Composite from 4.5 to 26.5 GHz Frequency Range," in Instrumentation and Measurement Technology Conference, 2006. IMTC 2006. Proceedings of the IEEE, pp. 2205-2208, 2006.
[36] L. Mi, W. Yong, and M. N. Afsar, "Precision measurement of complex permittivity and permeability by microwave cavity perturbation technique," in Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, 2005. IRMMW-THz 2005. The Joint 30th International Conference on, vol. 1, pp. 62-63 2005.
[37] M. Lin and M. N. Afsar, "Cavity perturbation measurement of dielectric and magnetic properties of ferrite materials in microwave frequency range," in Magnetics Conference, 2006. INTERMAG 2006. IEEE International, pp. 1001-1001, 2006.
[38] M. Sucher, and J. Fox, "Handbook of microwave measurements," 國興出版社,頁數530-538民國68年,初版。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊