跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 13:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:傅均溢
研究生(外文):FU,JUN-YI
論文名稱:新型鈍氣環狀分子、含有多個Xe原子之聚合物與聚丙烯腈熱化學反應的理論研究
論文名稱(外文):Theoretical Study on the New Ringed Molecules Containing Noble Gas, Polymeric Xe-Containing Molecules,and Polyacrylonitrile Thermo-Chemical Reactions
指導教授:胡維平
指導教授(外文):Hu,Wei-ping
口試委員:李進榮莊曜遠
口試委員(外文):Lee,Chin-RongChuang,Yao-Yuan
口試日期:2016-07-26
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:131
中文關鍵詞:理論研究鈍氣分子鈍氣聚合物聚丙烯腈熱化學反應
外文關鍵詞:Theoretical StudyNoble gas moleculesNoble gas polymerspolyacrylonitrile thermochemical reaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本篇碩士論文共分為四章,第一章中我們探討一系列含鈍氣之新型環狀分子NgO2N2B2OR2、NgON3B2OR2 ( Ng=Xe、Kr )、( R=H、F )的穩定性;在第二章中,我們預測了一新型態的Xe鈍氣聚合物 R(XeOBeO)nXeR (R = H or F;n = 1, 2) ,並探討此聚合物的穩定性;第三章中我們研究polyacrylonitrile (PAN) 形成碳纖維過程中的環化反應(cyclization)與脫氫反應(dehydrogenation) 的反應機制;在第四章中,我們設計了兩個新型態含多個鈍氣原子之化合物,且這類分子在連接主鏈上無鈍氣原子,分子式為 (FNgCC-Gly)n、(FNg CH2CCH3)n ( Ng = Kr、Xe ; n=1 ~ 4),並探討這類聚合物是否能穩定存在。
第一章中,我們試著去尋找能夠穩定存在的含鈍氣的環狀分子,以往的研究顯示,通式為 OnXeO2CR1R2 (n = 2, 3; R1,R2 = H, CH3 F, Cl) 之 Xe 四員環狀化合物,因環張力過高無法穩定存在,因此我們嘗試將部分O 原子以N 原子取代,並將環擴大至六環,形成一系列含鈍氣之中性分子與陰離子,其通式為NgO2N2B2OR2、NgON3B2OR2 ( Ng=Xe、Kr )、( R=H、F )。我們使用ab initio 與 DFT 理論方法中的 MP2、CCSD(T) 及B3LYP進行結構及穩定性的計算。研究結果顯示XeO2N2B2OF2、XeO2N2B2OH2、XeON3B2OF2、XeON3B2OH2 這些Xe分子或陰離子具有相當大的ST gap,使分子穩定存在於單重態中,且具有高的反應能障使其具有相當的動力學穩定性,因而推測它們能夠於低溫下穩定存在。
在二章中我們探討R(XeOBeO)nXeR (R = H or F;n = 1, 2) 這類含有多個Xe原子之聚合物之穩定性,我們使用MP2及B3LYP進行計算得知其分子結構與穩定性。研究結果顯示,當n = 1時為HXeOBeOXeH、FXeOBeOXeH、FXeOBeOXeF,這類分子之鈍氣鍵結能量分別為61.2、84.4、99.0 kcal/mol,且具有35 kcal/mol 以上的分解反應之能障,具有熱力學與動力學穩定性,在低溫下應可穩定存在。當n = 2時,H(XeOBeO)nXeH、F(XeOBeO)nXeH,這類分子中段XeO鍵的鍵結分別9.4、11.3 kcal/mol,不具高的鍵結穩定能,但仍可勉強穩定,至於F(XeOBeO)nXeF的鍵結僅具有1.25 kcal/mol,無法穩定存在。因此可以推論此類的更大型分子(n > 1)應不具有熱力學穩定性。
在第三章中,我們探討polyacrylonitrile (PAN) 合成碳纖維的過程中,環化反應(cyclization)與脫氫反應(dehydrogenation) 的反應機制。我們先以四個單體構成的acrylonitrile homopolymer (4AN) 做為分子模型,並以M06-2X理論方法計算其反應之能障及相對能量,結果顯示環化反應經由4AN自身熱裂解產生的CN自由基的催化下,每一環化過程約需經過18 kcal/mol 左右的反應能障,反應最終為一自由基產物,再與CN自由基進行自由基消去反應後,大量放熱140 kcal/mol 左右。在脫氫反應方面,4AN若在高溫下直接脫氫需100 kcal/mol以上的反應能障,反應完成而產生三分子的氫需大量吸熱120 kcal/mol以上,因此我們以理論計算發現到另一脫氫反應機制,藉由自由基催化來進行脫氫,其反應過程中只需經 -1.2 ~ 11 kcal/mol的反應能障,相較於直接脫氫要來的容易進行。因此我們認為自由基環化反應具有不高的反應能障並為大量放熱的反應,反應是容易發生的。我們認為若進行脫氫反應,自由基脫氫反應相較於直接脫氫反應要來的容易,不過此脫氫反應可能還存在著其它的反應機制,需要再進一步研究。
在第四章中,我們設計出兩個新型態之含有多個鈍氣原子之聚合物 (FNgCCGly)n、(FNg CH2CCH3)n ( Ng = Kr、Xe ; n=1- 4; Glycine 簡稱為Gly) ,這類分子在主鏈上並無鈍氣原子,我們並以理論計算探討此類分子的穩定性。研究結果顯示,FNgCC-Gly分子當Ng = Kr、Xe時,分別具有28.7、57.2 kcal/mol的分解穩定能,且隨著分子系統擴大(n = 2、3、4) ,仍具有具有15、35 kcal/mol以上的分解穩定能,符合熱力學上的穩定性。而(FNg CH2CCH3)n在n > 2 時,則會因分解反應過程中會進行自由基轉移,使分解穩定能大幅下降,而無法穩定存在 (Ng =Xe ; n = 3時除外)。
This thesis consists of four chapters. In the first chapter, we tried to find new stable ringed molecules containing noble gas atoms . In previous studies, we had shown that general formula OnXeO2CR1R2 (n = 2, 3; R1,R2 = H, CH3, F, Cl) four-member ringed molecules were not stable because of the ring strain. In the current study, we replaced the O atoms with N atoms, and extended the study to six-member rings. The general formula of these neutral molecules and anions was NgO2N2B2OR2、NgON3B2OR2 ( Ng = Xe、Kr )、( R=H、F ). We used MP2、CCSD(T) and B3LYP theory to predict the structures of these molecules. The results suggested that XeO2N2B2OF2、XeO2N2B2OH2、XeON3B2OF2、XeON3B2OH2all have large ST gaps. Our calculation also showed that the dissociation barriers are high. Our results thus suggested that these molecules could exist at the low temperature.
In the second chapter, we studied the stabilities of molecules containing more than one noble gas atom. We used the MP2 and B3LYP theory to predict the structures of R(XeOBeO)nXeR (R = H or F;n = 1, 2) and their stabilities .The calculated results showed that for n = 1, the molecules HXeOBeOXeH、FXeOBeOXeH and FXeOBeOXeF are stable. The noble-gas bond energies of these molecules were 61.2、84.4 and 99.0 kcal/mol, respectively. The dissociation barriers were estimated to be higher than 35 kcal/mol at the CCSD(T)/aug-cc-pVTZ level.However, for n > 1, our calculation indicated that these molecules do not have enough stability even at low temperature.
In the third chapter, we studied the mechanisms of the cyclization and dehydrogenation reactions of polyacrylonitrile (PAN). Our results showed that the barrier of cyclization reaction via self-generated CN free radical was about 18 kcal/mol, and the reaction is highly exothermic. Our calculation also showed that the direct dehydrogenation of 4AN needs to overcome barriers over 100 kcal/mol, and the overall reaction was highlyendothermic. We also calculated alternative dehydrogenation pathways at the presence of free radicals. The reactions only required barriers about -1.2 ~ 11 kcal/mol. We conclude that the free radical reactions are much more likely to occur in the dehydrogenation processes.
In the fourth chapter, we studied the stabilities of two new type polymers containing more than one noble gas atom. The general formula are (FNgCC-Gly)n and (FNg CH2CCH3)n ( Ng = Kr、Xe ; n=1 ~ 4) The calculated results showed that FNgCC-Gly for Ng = Kr、Xe, the noble-gas bond energies were 28.7、57.2 kcal/mol.With the expansion of the molecular systems (n = 2、3、4) , the noble-gas bond energies were still more than 15、35 kcal/mol, respectively. For (FNg CH2CCH3)n with n > 2, the decomposition reaction would accompanies a radical shift, such that stability substantial declines.
中文摘要 a
Abstract e
第一章 新型含鈍氣環狀分子的理論研究 1
1.1 摘要 1
1.2前言 1
1.3 計算方法 3
1.4 結果與討論 4
(A) XeO2N2B2OF2 結構與穩定性探討 4
(B) KrO2N2B2OF2 結構與穩定性探討 6
(C) XeO2N2B2OH2 結構與穩定性探討 7
(D) KrO2N2B2OH2 結構與穩定性探討 8
(E) XeON3B2OF2陰離子結構與穩定性探討 10
(F) KrON3B2OF2陰離子結構與穩定性探討 11
(G) XeON3B2OH2陰離子結構與穩定性探討 12
(H) KrON3B2OH2陰離子結構與穩定性探討 14
1.5 結論 16
1.6 參考文獻 17
第二章 新型含有XeOBeO鈍氣聚合物的理論研究 47
2.1 摘要 47
2.2前言 47
2.3 計算方法 48
2.4 結果與討論 49
a. 最小單元RXeOBeOH (R= H or F) 之結構與穩定性探討 49
b. R(XeOBeO)nXeR (n=1 ; R= H or F) 之結構與穩定性探討 50
c. R(XeOBeO)nXeR (n=2 ; R= H or F) 之結構與穩定性探討 52
2.5 結論 54
2.6參考文獻 56
第三章 聚丙烯腈之脫氫環化反應理論研究 73
3.1 摘要 73
3.2 前言 73
3.3 計算方法 76
3.4 結果與討論 76
a. 4AN homogenous polymer的環化 76
b. 6 AN homogenous polymer的環化 78
c. 4 AN homogenous polymer的直接脫氫 79
d. 6 AN homogenous polymer的直接脫氫 79
e. 4 AN homogenous polymer的自由基脫氫 81
3.5 結論 83
3.6參考文獻 84
第四章 穩定含有多個鈍氣之聚合物 (FNgCC-Gly)n、(FNg CH2CCH3)n ( Ng = Kr、Xe ; n=1 ~ 4) 97
4.1 摘要 97
4.2 前言 97
4.3 計算方法 98
4.4 結果與討論 99
a. (FNgCC-Giy)n之能量的穩定性探討 99
b. (H2CCFNgCH3)n之能量的穩定性探討 100
4.5結論 102
4.6參考文獻 103

1.Greenwood, N. N.; Earnshaw, A. In Chemistry of the Elements; ButterworthHeinemann: Oxford, 2001; p 888.
2.Lewis, G. N. J. Am. Chem. Soc. 1916, 38. 762.
3.Pauling, L. J. Am. Chem. 1933, 55, 1895.
4.Bartlett, N. Proc. Chem. Soc. 1962, 218.
5.Hoppe, R.; Dahne, W.; Mattauch, H.; Rodder, K. M. Angew. Chem. 1962, 74, 903; Angew. Cfiem., Int. Ed. Engl. 1962, I , 599.
6.Claassen, H. H.; Selig, H.; Malm, J. G. J. Am. Chem. SOC. 1962, 84,3593
7.Malm, J. G.; Sheft, I.; Chernick, C. L. J. Am. Chem. SOC. 1963, 85,110
8.Pettersson, M.; Lundell, J.; Räsänen, M. J. Chem. Phys. 1995, 102. 6423.
9.Christe, K.O. Angew. Chem. Int. Ed. 2001, 40. 1419.
10.Pettersson, M.; Lundell, J.; Räsänen, M. Eur. J. Inorg. Chem. 1999, 729.
11.Khriachtchev, L.; Pettersson, M.; Runeberg, N.; Lundell, J.; Räsänen, M. Nature 2000, 406. 874.
12.Khriachtchev, L.; Pettersson, M.; Lignell, A.; Lundell, J.; Räsänen, M. J. Am.Chem. Soc. 2001, 123. 8610.
13.Gerber, R. B. Annu. Rev. Phys. Chem. 2004, 55. 55.
14.Liu, D. J.; Ho, W. C.; Oka, T. J. Chem. Phys. 1987, 87. 2442.
15.劉曉菁。2012。Theoretical Prediction on the Stability of the Ringed Noble-Gas Molecules 。碩士論文。嘉義:中正大學 化學暨生物化學研究所。
16.Sun, Y.-L.; Hong, J.-T.; Hu, W.-P. J. Phys. Chem. A 2010, 114, 9359.
17.Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.
18.Pople, J. A.; Head‐Gordon, M.; Raghavachari, K. J. Chem. Phys.1987, 87, 5968.
19.Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.
20.Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007.
21.Kendall, R.A.; Dunning, T. H., Jr. J. Chem. Phys. 1992, 96, 6796.
22.Woon, D.E.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 98, 1358.
23.Wilson, A.K.; Woon, D. E.; Peterson, K. A.; Dunning, T. H., Jr. J. Chem. Phys.1999, 110, 7667.
24.(a) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007. (b) Kendall, R.A.; Dunning, T. H., Jr. J. Chem. Phys. 1992, 96, 6796. (c) Woon, D.E.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 98, 1358. (d) Wilson, A.K.; Woon, D. E.; Peterson, K. A.; Dunning, T. H., Jr. J. Chem. Phys.1999, 110, 7667.
25.Gaussian 09, Revision D.1, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C. Iyengar, S. S. Tomasi, J. Cossi, M. Rega, Millam, N. J., Klene, M. Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., and Fox, D. J., Gaussian, Inc., Wallingford CT, 2009.
26.Bartlett, N.; Wechsberg, M.; Jones, G.-R.; Burbank, R.-D. Inorg. Chem. 1972, 11, 1124.
27.Pyykko, P.; Tamm, T. J. Phys. Chem. 2000, 104, 3826.
28.Li, T. H.; Mou, C. H.; Chen, H. R.; Hu, W. P. J. Am. Chem. Soc. 2005, 127, 9241.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top