跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 09:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳志緯
研究生(外文):Chih-Wei Chen
論文名稱:具滑動感知之陣列式軟性觸覺感測器於摩擦係數之量測
論文名稱(外文):Detection of the Coefficient of Friction and Slippage Based on Flexible Tactile Sensor with Structural Electrodes Array
指導教授:莊承鑫莊承鑫引用關係
指導教授(外文):Cheng-Hsin Chuang
學位類別:碩士
校院名稱:南台科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:70
中文關鍵詞:觸覺感測器滑動軟性電子結構化電極
外文關鍵詞:Tactile sensorPVDFSlippageStructural electrodeFlexible electrics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:487
  • 評分評分:
  • 下載下載:88
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出結構化電極的概念並在外層包覆一彈性材料PDMS,建構出具辨認動態正向力及感知接觸物件滑動的產生及其方向之軟性觸覺感測器。有別於一般傳統的壓電型觸覺感測器,我們利用微機電製程設計製作微電極於高分子壓電薄膜(PVDF)上,並以矽橡膠製作微結構黏接在微電極上,之後再以PDMS灌注封裝以完成感測器之製作。本實驗以激振器(Shaker)與力規(Force Sensor)作為動態週期性的微小力之觸發源與力量校正,此外架設一滑動測試平台以驗證滑動感知的能力,經實驗結果可知正向抓取力與物件懸吊之荷重呈現一線性關係,進而推算出物件與觸覺感測器接觸表面之摩擦係數。本研究之觸覺感測器不僅可量測動態正向力,也能偵測到物件滑動的發生,且由微陣列電極結構也利於判別物件接觸感測器所在之點位,實驗跟模擬分析之結果也相當的符合。未來可應用於機器人手部觸覺防滑及抓取物品之準確性。
A novel flexible tactile sensor for sensing the incident slippage and its direction were designed by introducing the concept of structural electrodes on a piezoelectric film (PVDF). The structural electrodes consisted of an elastomeric column on the top of PVDF film with the distributed microelectrodes underneath the elastomeric column. As an object was placed upon the elastomeric column and pushed by an external force, the occurrence of slippage can be detected by the output voltages from the distributed microelectrodes due to the corresponding bending stresses distributed on the PVDF film. In addition, two opposite output voltages read out from different microelectrodes can differentiate the direction of slippage while the elastomeric column was bent by the friction force between the object and column surface. As the experimental results, two peak voltages happened simultaneously in either compressive-stress area or tensile-stress area when the slippage occurred. Thus, the slippage between the object and elastomeric column can be detected. Besides, the peak value of slippage voltage depends on the height of column and the weight of object. This paper successfully demonstrated the concept of structural electrodes for sensing the incident slippage based on a piezoelectric tactile sensor.
摘要 I
Abstract II
致謝 III
目次 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機與目的 6
1.4 研究方法 7
1.5 本文架構 7
第二章 理論基礎與數值分析 8
2.1 壓電材料 8
2.1.1 壓電效應原理 8
2.1.1.1 正壓電效應 8
2.1.1.2 逆壓電效應 11
2.2 PVDF壓電特性 13
2.2.1 PVDF結構組成 13
2.2.2 PVDF壓電薄膜之優點 14
2.3 模型建立 16
2.2.1 具單顆矽橡膠微結構參數設定 16
2.2.2 具2×2陣列矽橡膠微結構參數設定 19
2.4 模擬結果與討論 20
2.4.1 具單顆矽橡膠微結構模擬結果 20
2.4.2 具2×2陣列矽橡膠微結構模擬結果 26
第三章 元件設計與製程 29
3.1 製程設備 29
3.2 元件設計 31
3.2.1 光罩製作 31
3.2.2 矽橡膠微結構及PDMS包覆層之設計與製作 31
3.3 製作流程 32
第四章 實驗架構與量測系統 34
4.1 實驗儀器 34
4.2 實驗架構 37
4.2.1 動態正向力之實驗架構 37
4.2.2 物體滑動測試之實驗架構 39
第五章 結果與討論 41
5.1 實驗結果 41
5.1.1 動態正向力實驗結果 41
5.1.2 物體滑動實驗結果 42
5.1.2.1 滑動感知 42
5.1.2.2 表面靜摩擦係數量測 45
5.1.3 實驗結果與討論 47
第六章 結論與未來展望 48
6.1 結論 48
6.2 未來展望 49
參考文獻 50
附錄
C PVDF參數表 53
作者簡介
1. D.J. Beebe, A.S. Hsieh, D.D. Denton and R.G. Radwin, “A silicon force sensor for robotic manipulation,” Proc. of the 7th Int. Conf. on Advanced Robotics, pp.889–894, 1995.
2. B. Hok, L. Tenerz and K. Gustafson, “Fiber-optic sensors: A micro-mechanical approach,” Sensors and Actuators 17, pp.157–166, 1989.
3. R.S. Fearing, “Some experiments with tactile sensing during grasping,” Proc. of the IEEE Int. Conf. On Robotics and Automation,” pp.1637–1643, 1987.
4. D. DeRossi, L. Lazzeri, C. Domenici, A. Nannini and P. Basser, “Tactile sensing by an electromechano-chemical skin,” Sensors and Actuators 17, pp.107–111, 1989.
5. S. Hackwood, G. Beni, L.A. Hornak, R.Wolfe and T.J. Neson, “A torque-sensitive tactile sensor array for robotics,” Int. J. Robotics Res. 2 pp.46–50, 1985.
6. Measurement Specialties, Inc Piezo Film Sensors, Technical Manual, pp.1-50, 1999.
7. E.S. Kolesar, Jr., R.R. Reston, D.G. Ford and R.C. Fitch, Jr., “Multiplexed piezoelectric polymer tactile sensor,” J. Robotic System 9, pp.37–63, 1992.
8. Koh Hosod, Yasunori Tada, Minoru Asada, “Anthropomorphic robotic soft fingertip with randomly distributed receptors,” Robotics and Autonomous Systems Volume: 54, Issue: 2, pp. 104-109, 2006.
9. Takashi Maeno, Shinichi Hiromitsu and Takashi Kawai,“Control of Grasping Force by Detecting Stick/Slip Distribution at the Curved Surface of an Elastic Finger, ” Robotics and Automation, Proceedings. ICRA '00. IEEE International Conference on Volume 4, pp. 3895-3900, 2000.
10. M. Sohgawa, H. Onishi, Y. -M. Huang, T. Kanashima, K. Yamashita, “Detection of Normal and Shear Stresses by Tactile Sensors with Piezoresistive Micro-Cantilever and Elastomer,” 2008.
11. Seiichi Teshigawara, Masatoshi Ishikawa, Makoto Shimojo, “Study of High Speed and High Sensitivity Slip Sensor Characteristic of conductive material,” SICE Annual Conference, pp. 900-903, 2008.
12. Satoru Takenawa, “A soft three-axis tactile sensor based on electromagnetic induction,” IEEE International Conference on Mechatronics,” pp.1-6, 2009.
13. Naoki Saito, Toshiyuki Satoh and Hideharu Okano,“Grasping Force Control in consideration of Translational and Rotational Slippage by a Flexible Sensor,” IEEE Industrial Electronics, IECON 32nd Annual Conference, pp. 3892-3897, 2006.
14. Mohammad Ameen Qasaimeh, Saeed Sokhanvar, Javad Dargahi, Mojtaba Kahrizi, “PVDF-Based Microfabricated Tactile Sensor for Minimally Invasive Surgery,” Journal of Microelectromechanical Systems, pp.195-207, 2009.
15. Lucia Beccai, Stefano Roccella, Luca Ascari, Pietro Valdastri, Arne Sieber, M. Chiara Carrozza, Paolo Dario, “Development and Experimental Analysis of a Soft Compliant Tactile Microsensor for Anthropomorphic Artificial Hand,” IEEE/ASME Transactions on Mechatronics, pp.158-168, 2008.
16. Kohei Motoo, Fumihito Arai, Toshio Fukuda, “Piezoelectric Vibration-Type Tactile Sensor Using Elasticity and Viscosity Change of Structure,” IEEE SENSORS JOURNAL, pp.132-139, 2007.
17. Byungjune Choi, Sanghun Lee and Hyouk Ryeol Choi, Sungchul Kang,“Development of Anthropomorphic Robot Hand with Tactile Sensor : SKKU Hand II,” Intelligent Robots and Systems, IEEE/RSJ International Conference, pp. 3779-3784, 2006.
18. Hyung-Kew Lee, Sun-Il Chang, Euisik Yoon, ” A Flexible Polymer Tactile Sensor: Fabrication and Modular Expandability for Large Area Deployment,” Journal of Microelectromechanical Systems, pp.1681-1686, 2006.
19. Hyung-Kew Lee, Jaehoon Chung, Sun-Il Chang, and Euisik Yoon,“Polymer Tactile Sensing Array With a Unit Cell Of Multiple Capacitors for Three-Axis Contact Force Image Construction,” Micro Electro Mechanical Systems, MEMS. IEEE 20th International Conference, pp.623-626, 2007.
20. Jun-ichiro YUJI and Chikara SONODA,“A Capacitive PVDF Tactile Sensor with Contact Force and Temperature Sensing Function,” 2nd International Conference on Sensing Technology Palmerston North, New Zealand, 2007.
21. Thomas V. Papakostas, Julian Lima, Mark Lowe, “A Large Area Force Sensor for Smart Skin Applications”, IEEE Sensors, pp.1620-1624, 2002.
22. R. Gregorio Jr, M. Cestari and F.E. Bernardino, “Dielectric behaviour of thin films of β -PVDF/PZT and β -PVDF/BaTiO3 composites,” Journal of Materials Science pp.2925-2930, 1996.
23. R. W. Whatmore, “Pyroelectric devices and materials,” Rep. Prog. Phys. pp.1356-1359, 1986.
24. R. Gregorio and M. Cestari, “Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride),” Journal of Polymer Science:Part B:Polymer Physics, pp.859-870, 1994.
25. M.K. Brown, “Feature extraction techniques for recognizing solid objects with an ultrasonic range sensor,” IEEE J. Robotics Automat. RA-1, pp.191–205, 1985.
26. R. S. Johansson and G. Westling, “Tactile afferent signals in the control of precision grip”, Atten. Perform, pp.677-713, 1990.
27. Robert D. Howe and Mark R. Cutkosky, “Dynamic Tactile Sensing: Perception of Fine Surface Features with Stress Rate Sensing”, IEEE Transactions on Robotics and Automation, pp.140-151, 1993.
28. Gaetano Canepa, Rocco Petrigliano, Matteo Campanella, and Danilo De Rossi, “Detection of Incipient Object Slippage by Skin-Like Sensing and Neural Network Processing”, IEEE Transactions on Systems, man, and Cybernetics—Part B: Cybernetics, 1998.
29. Isao Fujimoto, Takashi Maeno, Yoji Yamada, Tetsuya Morizono, Yoji Umetani, “Development of Artificial Finger Skin to Detect Incipient Slip for Realization of Static Friction Sensation,” Proc. IEEE Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp.15-21, 2003.
30. Byungjune Choi, Sungchul Kang, Hyouk Ryeol Choi, “Development of Tactile Sensor for Detecting Contact Force and Slip”, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.1977~1982, 2005.
31. Akio YAMAMOTO, Kyu Yong KIM, and Toshiro HIGUCHI, “Tactile Telepresence
甲、System using PVDF Sensors and Electrostatic Stimulator ” Hongo, Bunkyo,Tokyo,
乙、113-8656, Japan, 2005.
32. Kentaro Noda, Kazunori Hoshino, Kiyoshi Matsumoto, Isaom Shimoyama,” A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material,” Sensors and Actuators, pp.295–301, 2006.
33. Y. Hasegawa, M. Shikida*, D. Ogura, and K. Sato,”Novel Type Of Fabric Tactile Sensor Made From Artificial Hollow Fiber,” MEMS 2007, Kobe, Japan, pp.21-25, 2007.
34. Kentaro Noda, Kazunori Hoshino, Kiyoshi Matsumoto, Isao Shimoyama, ”A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material,” Sensors and Actuators, pp.295–301, 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊