跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/17 00:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳聖鴻
研究生(外文):Sheng-Hung Chen
論文名稱:半線性非局部邊界條件積微分問題之研究
論文名稱(外文):A STUDY ON SEMILINEAR INTEGRO-DIFFERENTIAL PROBLEMS WITH NONLOCAL BOUNDARY CONDITIONS.
指導教授:廖漢雄廖漢雄引用關係
指導教授(外文):Hon-hung Terence Liu
學位類別:碩士
校院名稱:大同大學
系所名稱:應用數學學系(所)
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:40
中文關鍵詞:積微分方程唯一性存在性非局部邊界條件爆炸偏微分方程
外文關鍵詞:blow upexistenceintegro-differential equationsnonlocal boundary conditionuniqueness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
centerline{k16 摘要} vspace{24pt}k14 large 設 $T$, $p$ 為
正常數且 $pgeqslant 1$, $Omega$ 為 $Bbb{R}^n$ 中平滑有界區域,
$partial Omega $ 為 $Omega$ 的邊界, 又 $Delta$ 為 Laplacian
算子。 本文探討半線性拋物非局部之邊界條件積微分方程式:
egin{align*}
u_t(t,x)-Delta u(t,x) &= left(int^{t}_{0}mid u(s,x)mid ^{p}ds
ight) u(t,x) in (0,T) imes Omega,
otag
Bu(t,x) &= int_{Omega}K(x,y)u(t,y)dy in (0,T) imes partial Omega, label{equ:main}
u(0,x) &= u_{0}(x), xin Omega,
otag
&
end{align*}
其中 $K(x,y)$ 與 $u_{0}(x)$ 為 $Omegacup partial Omega$
上的非負連續函數, $B$ 為邊界算子
egin{equation*}
Buequiv alpha_{0} rac{partial u}{partial
u}+u,
end{equation*}
$alpha_0geqslant 0$, 且 $D rac{partial u}{partial
u }$
代表 $u$ 在 $partialOmega $ 上的外法向量導數。
本文證明了解的局部存在性與唯一性,並證明爆炸的產生。
centerline{Large Abstract} aselineskip=1.5 aselineskip
vspace{24pt} large Let $T$, $p$ be positive constants with
$pgeqslant 1$, $Omega$ be a smooth bounded domain in
$Bbb{R}^n$, $partial Omega $ be the boundary of $Omega$, and
$Delta$ be the Laplacian. This paper studies the semilinear
parabolic integro-differential problems with nonlocal boundary
condition:
egin{align*}
u_t(t,x)-Delta u(t,x) &= left(int^{t}_{0}mid u(s,x)mid ^{p}ds
ight) u(t,x) in (0,T) imes Omega,
otag
Bu(t,x) &= int_{Omega}K(x,y)u(t,y)dy in (0,T) imes partial Omega,
u(0,x) &= u_{0}(x), xin Omega,
otag
&
end{align*}
where $K(x,y)$ and $u_{0}(x)$ are nonnegative continuous functions
on $Omegacup partial Omega$, and $B$ is the boundary operator
egin{equation*}
Buequiv alpha_{0} rac{partial u}{partial
u}+u,
end{equation*}
with $alpha_0geqslant 0$, and $D rac{partial u}{partial

u }$
denotes the outward normal derivative of $u$ on $partialOmega $.
The local existence and uniqueness of the solution are
investigated. Blow-up criteria for the problem is given.
1.Introduction
2.Comparison results
3.Local existence of the problem
4.Non-existence of the solution
5.References
egin{thebibliography}{99}
setcounter{page}{31}
chapter{References}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Beberens} J. W. Beberens and R. Ely, {it Comparison techniques and the method of lines for a parabolic functional equations},
Rocky Mountain. J. Math. { f 12} (1982), 723-733.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Chabrowski} J. Chabrowski, {it On nonlocal problem for parabolic equations},
Nagoya Math. J. { f 93} (1984), 109-131.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Day} W. A. Day, {it Extensions of a property of heat equation to linear thermoelasticity
and other theories}, Quart. Appl. Math { f 40} (1982), 319-330.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Day2} W. A. Day, {it A decreasing property of solutions of parabolic equations with
applications to thermoelasticity}, Quart. Appl. Math { f 40} (1983), 468-475.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Day3} W. A. Day, {it Heat condition within linear thermoelasticity}, 1985, Springer, New
York.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Deng} K. Deng, {it Comparison principle for some nonlocal problems},
Quart. Appl. Math { f 50} (1992), 517-522.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Deng2} K. Deng, {it Exponential decay of solutions of semilinear parabolic equations
with nonlocal conditions}, J. Math. Anal. Appl. { f 179} (1993), 630-637.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Friedman} A. Friedman, {it Partial Differential Equations of Parabolic Type}, 1964,
Prentice Hall, Englewood Cliffs, New Jersey.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Friedman2} A. Friedman, {it Monotone decay of solutions of parabolic equations with
nonlocal boundary conditions}, Quart. Appl. Math. { f 44} (1986), 401-407.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Hirata} D. Hirata, {it Blow-up for a class of semilinear integro-differential equations of parabolic type},
Math. Meth. Appl. Sci. { f 22} (1999), 1087-1100.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Kas} W. E. Kastenberg, {it Space dependent reactor kinetics with positive
feedback,} Nukleonik { f 11} (1968), 126-130.

ibitem{Kawohi} B. Kawohi, {it Remarks on a paper by W. A. Day on a maximum principle under
nonlocal boundary conditions}, Quart. Appl. Math { f 44} (1987), 751-752.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem {LaSoUr} O. A. Ladyv{z}enskaja, V. A. Solonnikov, N.
N. Ural'ceva, {it Linear and Quasilinear Equations of Parabolic
Type}, 1968, Amer. Math. Soc., Providence, RI.

ibitem{Lakshmikantham} V. Lakshmikantham and M. Rama Mohana Rao, {it Theory of Inyegro-differential Equations}, 1995,
Gordon and Breach Science Publishers.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


ibitem{Pao} C. V. Pao, {it Nonlinear Parabolic and Elliptic Equations}, 1992,
Plenum, New York.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Pao2} C. V. Pao, {it Blowing-up of solution for a nonlocal reaction-diffusion problem in combustion theory},
J. Math. Anal. Appl. { f 166} (1992), 591-600.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Pao3} C. V. Pao, {it Dynamics of reaction diffusion equations with nonlocal boundary
conditions}, Quart. Appl. Math { f 53} (1995), 173-186.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Pao4} C. V. Pao, {it Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions},
J. Math. Anal. Appl. { f 195} (1995), 702-718.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Pao5} C. V. Pao, {it Asymptotic behavior of solutions of reaction-diffusion with nonlocal boundary conditions},
Quart. Appl. Math { f 88} (1998), 225-238.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Protter} M. H. Protter and H. F. Weinberger,
{it Maximum Principles in Differential Equation}, 1967, Prentice Hall, Englewood Cliffs
New Jersey.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Wang} M. Wang and Y. Wang, {it Properties of positive solutions for non-local reaction-diffusion problems},
Math. Methods. Appl. Sci. { f 19} (1996), 1141-1156.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Yin} Y. F. Yin, {it On nonlinear parabolic equations with nonlocal boundary condition},
J. Math. Anal. Appl. { f 185} (1994), 161-174.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end{thebibliography}
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top