資料載入處理中...
跳到主要內容
臺灣博碩士論文加值系統
:::
網站導覽
|
首頁
|
關於本站
|
聯絡我們
|
國圖首頁
|
常見問題
|
操作說明
English
|
FB 專頁
|
Mobile
免費會員
登入
|
註冊
切換版面粉紅色
切換版面綠色
切換版面橘色
切換版面淡藍色
切換版面黃色
切換版面藍色
功能切換導覽列
(216.73.216.59) 您好!臺灣時間:2025/10/17 00:51
字體大小:
字級大小SCRIPT,如您的瀏覽器不支援,IE6請利用鍵盤按住ALT鍵 + V → X → (G)最大(L)較大(M)中(S)較小(A)小,來選擇適合您的文字大小,如為IE7或Firefoxy瀏覽器則可利用鍵盤 Ctrl + (+)放大 (-)縮小來改變字型大小。
字體大小變更功能,需開啟瀏覽器的JAVASCRIPT功能
:::
詳目顯示
recordfocus
第 1 筆 / 共 1 筆
/1
頁
論文基本資料
摘要
外文摘要
目次
參考文獻
電子全文
紙本論文
QR Code
本論文永久網址
:
複製永久網址
Twitter
研究生:
陳聖鴻
研究生(外文):
Sheng-Hung Chen
論文名稱:
半線性非局部邊界條件積微分問題之研究
論文名稱(外文):
A STUDY ON SEMILINEAR INTEGRO-DIFFERENTIAL PROBLEMS WITH NONLOCAL BOUNDARY CONDITIONS.
指導教授:
廖漢雄
指導教授(外文):
Hon-hung Terence Liu
學位類別:
碩士
校院名稱:
大同大學
系所名稱:
應用數學學系(所)
學門:
數學及統計學門
學類:
數學學類
論文種類:
學術論文
論文出版年:
2006
畢業學年度:
94
語文別:
英文
論文頁數:
40
中文關鍵詞:
積微分方程
、
唯一性
、
存在性
、
非局部邊界條件
、
爆炸
、
偏微分方程
外文關鍵詞:
blow up
、
existence
、
integro-differential equations
、
nonlocal boundary condition
、
uniqueness
相關次數:
被引用:0
點閱:177
評分:
下載:8
書目收藏:0
centerline{k16 摘要} vspace{24pt}k14 large 設 $T$, $p$ 為
正常數且 $pgeqslant 1$, $Omega$ 為 $Bbb{R}^n$ 中平滑有界區域,
$partial Omega $ 為 $Omega$ 的邊界, 又 $Delta$ 為 Laplacian
算子。 本文探討半線性拋物非局部之邊界條件積微分方程式:
egin{align*}
u_t(t,x)-Delta u(t,x) &= left(int^{t}_{0}mid u(s,x)mid ^{p}ds
ight) u(t,x) in (0,T) imes Omega,
otag
Bu(t,x) &= int_{Omega}K(x,y)u(t,y)dy in (0,T) imes partial Omega, label{equ:main}
u(0,x) &= u_{0}(x), xin Omega,
otag
&
end{align*}
其中 $K(x,y)$ 與 $u_{0}(x)$ 為 $Omegacup partial Omega$
上的非負連續函數, $B$ 為邊界算子
egin{equation*}
Buequiv alpha_{0} rac{partial u}{partial
u}+u,
end{equation*}
$alpha_0geqslant 0$, 且 $D rac{partial u}{partial
u }$
代表 $u$ 在 $partialOmega $ 上的外法向量導數。
本文證明了解的局部存在性與唯一性,並證明爆炸的產生。
centerline{Large Abstract} aselineskip=1.5 aselineskip
vspace{24pt} large Let $T$, $p$ be positive constants with
$pgeqslant 1$, $Omega$ be a smooth bounded domain in
$Bbb{R}^n$, $partial Omega $ be the boundary of $Omega$, and
$Delta$ be the Laplacian. This paper studies the semilinear
parabolic integro-differential problems with nonlocal boundary
condition:
egin{align*}
u_t(t,x)-Delta u(t,x) &= left(int^{t}_{0}mid u(s,x)mid ^{p}ds
ight) u(t,x) in (0,T) imes Omega,
otag
Bu(t,x) &= int_{Omega}K(x,y)u(t,y)dy in (0,T) imes partial Omega,
u(0,x) &= u_{0}(x), xin Omega,
otag
&
end{align*}
where $K(x,y)$ and $u_{0}(x)$ are nonnegative continuous functions
on $Omegacup partial Omega$, and $B$ is the boundary operator
egin{equation*}
Buequiv alpha_{0} rac{partial u}{partial
u}+u,
end{equation*}
with $alpha_0geqslant 0$, and $D rac{partial u}{partial
u }$
denotes the outward normal derivative of $u$ on $partialOmega $.
The local existence and uniqueness of the solution are
investigated. Blow-up criteria for the problem is given.
1.Introduction
2.Comparison results
3.Local existence of the problem
4.Non-existence of the solution
5.References
egin{thebibliography}{99}
setcounter{page}{31}
chapter{References}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Beberens} J. W. Beberens and R. Ely, {it Comparison techniques and the method of lines for a parabolic functional equations},
Rocky Mountain. J. Math. { f 12} (1982), 723-733.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Chabrowski} J. Chabrowski, {it On nonlocal problem for parabolic equations},
Nagoya Math. J. { f 93} (1984), 109-131.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Day} W. A. Day, {it Extensions of a property of heat equation to linear thermoelasticity
and other theories}, Quart. Appl. Math { f 40} (1982), 319-330.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Day2} W. A. Day, {it A decreasing property of solutions of parabolic equations with
applications to thermoelasticity}, Quart. Appl. Math { f 40} (1983), 468-475.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Day3} W. A. Day, {it Heat condition within linear thermoelasticity}, 1985, Springer, New
York.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Deng} K. Deng, {it Comparison principle for some nonlocal problems},
Quart. Appl. Math { f 50} (1992), 517-522.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Deng2} K. Deng, {it Exponential decay of solutions of semilinear parabolic equations
with nonlocal conditions}, J. Math. Anal. Appl. { f 179} (1993), 630-637.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Friedman} A. Friedman, {it Partial Differential Equations of Parabolic Type}, 1964,
Prentice Hall, Englewood Cliffs, New Jersey.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Friedman2} A. Friedman, {it Monotone decay of solutions of parabolic equations with
nonlocal boundary conditions}, Quart. Appl. Math. { f 44} (1986), 401-407.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Hirata} D. Hirata, {it Blow-up for a class of semilinear integro-differential equations of parabolic type},
Math. Meth. Appl. Sci. { f 22} (1999), 1087-1100.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Kas} W. E. Kastenberg, {it Space dependent reactor kinetics with positive
feedback,} Nukleonik { f 11} (1968), 126-130.
ibitem{Kawohi} B. Kawohi, {it Remarks on a paper by W. A. Day on a maximum principle under
nonlocal boundary conditions}, Quart. Appl. Math { f 44} (1987), 751-752.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem {LaSoUr} O. A. Ladyv{z}enskaja, V. A. Solonnikov, N.
N. Ural'ceva, {it Linear and Quasilinear Equations of Parabolic
Type}, 1968, Amer. Math. Soc., Providence, RI.
ibitem{Lakshmikantham} V. Lakshmikantham and M. Rama Mohana Rao, {it Theory of Inyegro-differential Equations}, 1995,
Gordon and Breach Science Publishers.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Pao} C. V. Pao, {it Nonlinear Parabolic and Elliptic Equations}, 1992,
Plenum, New York.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Pao2} C. V. Pao, {it Blowing-up of solution for a nonlocal reaction-diffusion problem in combustion theory},
J. Math. Anal. Appl. { f 166} (1992), 591-600.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Pao3} C. V. Pao, {it Dynamics of reaction diffusion equations with nonlocal boundary
conditions}, Quart. Appl. Math { f 53} (1995), 173-186.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Pao4} C. V. Pao, {it Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions},
J. Math. Anal. Appl. { f 195} (1995), 702-718.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Pao5} C. V. Pao, {it Asymptotic behavior of solutions of reaction-diffusion with nonlocal boundary conditions},
Quart. Appl. Math { f 88} (1998), 225-238.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Protter} M. H. Protter and H. F. Weinberger,
{it Maximum Principles in Differential Equation}, 1967, Prentice Hall, Englewood Cliffs
New Jersey.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Wang} M. Wang and Y. Wang, {it Properties of positive solutions for non-local reaction-diffusion problems},
Math. Methods. Appl. Sci. { f 19} (1996), 1141-1156.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ibitem{Yin} Y. F. Yin, {it On nonlinear parabolic equations with nonlocal boundary condition},
J. Math. Anal. Appl. { f 185} (1994), 161-174.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end{thebibliography}
電子全文
國圖紙本論文
推文
當script無法執行時可按︰
推文
網路書籤
當script無法執行時可按︰
網路書籤
推薦
當script無法執行時可按︰
推薦
評分
當script無法執行時可按︰
評分
引用網址
當script無法執行時可按︰
引用網址
轉寄
當script無法執行時可按︰
轉寄
top
相關論文
相關期刊
熱門點閱論文
1.
以波動方程理論建立單車道及號誌路口車流模式之基礎研究
2.
探討源自於隨機最佳化控制問題之偏微分方程與其相關應用
3.
某類網格型微分方程行波解的存在性,唯一性及穩定性
4.
雙占市場中競爭廠商價格與交期訂定之研究
5.
廣義李普諾夫方程式的一些論點
6.
拋物線方程解的蕭德估計
1.
古德龍(2003)。贊助商的眼中釘—(狙)擊行銷。運動管理季刊,4,107-113。
2.
葉明義、陳志賢(1999)。以廣告態度中介模式驗證比較性廣告效果。管理學報,16(1),1-19。
3.
張紘炬、魏石勇(2000)。產品之電視廣告效果個案分析。民意研究季刊,213,1-23。
4.
戚栩僊(2003)。廣告效果展現:資訊處理與意義解釋二模式之初探。廣告學研究,20,77-95。
1.
信託制度運用於個人財產規劃之實務問題探討
2.
具兩種不同反射係數之部分反射表面線性及圓形極化天線
3.
競爭式多目標最佳車削參數之研究
4.
添加劑對錳鋅鐵氧磁體低損失最佳化之研究
5.
(S)-2-(6-甲氧基-2-萘基)丙酸衍生物之旋光性液晶材料的合成與其性質的探討
6.
含(S)-1-甲基-2-[(2’-甲氧基)乙氧基]乙醇之新型旋光性液晶材料的合成與光電性質之研究
7.
發展以Web為基礎應用於前測與試測之工具驗證系統
8.
機構投資人的交易行為與年度效應之間的關係
9.
利用電漿沉積與添加酚醛樹脂製備高靈敏度與抗水性濕度感測器
10.
含硫旋光尾鏈衍生之誘電性及反誘電性液晶材料的合成及其光電性質之研究
11.
服務組織之有形性對服務保證性與消費者知覺價值之干擾效果
12.
在無線感測網路中定位方法之設計
13.
自動化測試GVRPProtocol
14.
基金集中投資程度、季節性與經理人績效之研究
15.
顧客信任與忠誠度關係之研究-以百貨公司為例
簡易查詢
|
進階查詢
|
熱門排行
|
我的研究室