跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.31) 您好!臺灣時間:2025/12/02 18:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許晉源
研究生(外文):Chin Yuan Hsu
論文名稱:藉由二氧化矽摻雜對氮化鈦電容感測器調變離子選擇比
論文名稱(外文):Ion selectivity modulation by silicon dioxide doping in Titanium Nitride capacitive sensor
指導教授:楊家銘楊家銘引用關係
指導教授(外文):C. M. Yang
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
論文頁數:98
中文關鍵詞:氮化鈦
外文關鍵詞:Titanium Nitride
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
製作出具備高鉀離子感測特性之感測薄膜,為此篇研究之主要動機。學生使用的感測器平台為離子感測場效電晶體(Ion Sensitivity Field Effect Transistor, ISFET)之核心電容(Electrolyte Insulator Silicon, EIS)。而研究中,則利用氮化鈦作為核心感測層之基礎材料,主要是氮化鈦材料普遍於半導體製程使用,可容易將此元件製程導入量產。本論文實現提升感測薄膜感測度之方法,分別藉由氮氣比例調配及二氧化矽比例調配,探討感測薄膜對氫離子與鉀離子之感測度,另外經過快速熱退火製程,改變感測薄膜表面粗糙度,改善感測度及線性度。選擇以無機調變作為改善感測薄膜之感測度方式,優點是可以有較穩定且一致性高之感測薄膜,樣品製作上亦有利大量製造與品質監控。根據實驗結果,氮化鈦於氮氣比例20% 時,pH 感測度為61.3mV/pH,線性度為99%,另外摻雜二氧化矽射頻功率150W於鉀離子感測度為21.7mV/pK,線性度為99.05%,離子選擇比KK,H為3.87。

The purpose of this research is to realize a novel method of potassium ion sensing membrane fabrication which is compatible with CMOS technology. Ion sensitivity platform is selected as Electrolyte Insulator Silicon (EIS) of Ion Sensitivity Field Effect Transistor (ISFET). In this research, Titanium Nitride, popularly applied to Semiconductor process, is used as the basic sensing membrane of EIS. In this research, adjusting different N2 ratio and different power of Si target in sputtering, sensitivity of sensing membrane could be improved. Besides, the surface roughness, sensitivity and linearity could be also modified by rapid thermal anneal process. The advantages of inorganic adjustment are stableness and consistency, contributing mass production and quality control. The Titanium Nitride shows that, pH sensitivity is 61.3mV/pH and linearity is 99% when the N2 ratio is 20%. Doping silicon dioxide with RF power at 150W, potassium ion sensitivity is 21.7mV/pK and linearity is 99.05%, selective coefficients KK,H is 3.87.

目 錄
指導教授推薦書
口試委員會審定書
誌謝 -iii-
中文摘要 -iv-
英文摘要 -v-
目錄 -vi-
圖目錄 -x-
表目錄 -xv-
第一章 簡介 - 1 -
1.1 背景與相關研究 - 1 -
1.2 離子感測場效電晶體原理 - 3 -
1.3 電解液-絕緣層-矽半導體電容結構 - 6 -
1.4氮化鈦及氮氧化矽鈦作為EIS結構之感測薄膜 - 7 -
1.5頻率-電容影響 - 8 -
1.6氮化鈦材料特性 - 9 -
1.7研究動機與方法 - 9 -
第二章 氮化鈦之pH感測度及鉀離子感測度 - 15 -
2.1氮化鈦/二氧化矽基板之EIS電容製備 - 16 -
2.1.1氮化鈦之感測薄膜製程 - 16 -
2.1.2氮化鈦感測薄膜快速熱退火處理 - 16 -
2.1.3 EIS結構封裝 - 17 -
2.2氮化鈦EIS結構之量測設置 - 17 -
2.2.1氮化鈦EIS結構之pH量測 - 18 -
2.2.2氮化鈦EIS結構之遲滯影響 - 18 -
2.2.3光效應對氮化鈦EIS結構之影響 - 19 -
2.3 不同離子之標準緩衝溶液配置方法 - 19 -
2.4 材料分析 - 20 -
2.5 結果與討論 - 21 -
2.5.1氮化鈦EIS結構之pH感測度影響 - 21 -
2.5.2 氮化鈦EIS結構經過快速熱退火之感測度影響 - 22 -
2.5.3 氮化鈦感測薄膜EIS結構之遲滯現象 - 23 -
2.5.4 氮化鈦感測薄膜EIS結構之Life time - 24 -
2.5.5 氮化鈦感測薄膜於鉀離子之感測 - 24-
2.5.6 10% N2濺鍍之氮化鈦EIS結構之pK感測度影響 - 25-
2.5.7原子力顯微鏡及XPS於氮化鈦感測薄膜EIS結構分析 - 26-
2.5.8 氮化鈦感測薄膜於氫離子與鉀離子之實驗結果 - 27-
第三章 氮氧化矽鈦之pH感測度及鉀離子感測度 - 42-
3.1二氧化矽感測薄膜之pH 與鈉離子感測度 - 43-
3.2氮氧化矽鈦/二氧化矽基板之EIS電容製備 - 43-
3.2.1氮氧化矽鈦之感測薄膜製程 - 43-
3.2.2 氮氧化矽鈦感測薄膜快速熱退火處理 - 44-
3.2.3 EIS結構封裝 - 44-
3.3 氮氧化矽鈦EIS結構之量測設置 - 45-
3.3.1 氮氧化矽鈦EIS結構之pH量測 - 45-
3.3.2氮氧化矽鈦EIS結構之遲滯影響 - 46-
3.3.3光效應對氮氧化矽鈦EIS結構之影響 - 46-
3.4不同離子之標準緩衝溶液配置方法 - 46-
3.5材料分析 - 47-
3.6結果與討論 - 48-
3.6.1氮氧化矽鈦EIS結構之pH感測度影響 - 48-
3.6.2 矽比例之氮氧化矽鈦EIS結構之快速熱退火之感測度影響 - 48-
3.6.3 氮氧化矽鈦感測薄膜EIS結構之遲滯現象 - 49-
3.6.4 氮氧化矽鈦感測薄膜EIS結構之Life time - 51-
3.6.5 氮氧化矽鈦感測薄膜於鉀離子之感測 - 51-
3.6.6 矽靶材射頻功率150W之氮氧化矽鈦EIS結構之pK感測度影響 - 52-
3.6.7原子力顯微鏡及XPS於氮氧化鈦感測薄膜EIS結構分析 - 52-
3.6.8 氮氧化矽鈦感測薄膜於氫離子與鉀離子之實驗結果 - 54-
第四章 結論 - 69-
參考文獻 - 71-
附錄 - 78-

圖目錄
第一章
圖1-1離子感測場效電晶體結構圖 - 12-
圖1-2鍵結解離模型 - 12-
圖1-3電容電壓特性曲線隨氫離子濃度變化偏移圖 - 13-
圖1-4頻率對電容之C-V特性曲線影響 - 13-
圖1-5論文研究架構 - 14-
第二章
圖2-1氮化鈦於pH4量測頻率之C-V特性曲線圖 - 29-
圖2-2製程流程圖 - 29-
圖2-3四點探針量測示意圖四點探針量測示意圖 - 30-
圖2-4XPS量測架構示意圖 - 30-
圖2-5氮化鈦感測薄膜未經快速熱退火EIS結構C-V特性曲線 - 31-
圖2-6氮化鈦感測薄膜未經快速熱退火EIS結構感測度及線性圖 - 31-
圖2-7氮化鈦感測薄膜EIS結構於氮氣中快速熱退火800℃C-V性曲線圖 - 32-
圖2-8氮化鈦感測薄膜EIS結構於氮氣中快速熱退火800℃之感度及線性圖 - 32-
圖2-9氮化鈦感測薄膜EIS結構於氮氣中快速熱退火pH感測趨勢 - 33-
圖2-10氮化鈦感測薄膜EIS結構於氮氣中快速熱退火pH線性度趨勢 - 33-
圖2-11氮化鈦感測薄膜N2 ratio 20% W/O快速熱退火之遲滯 - 34-
圖2-12氮化鈦感測薄膜N2 ratio 20%快速熱退火600℃之遲滯 - 34-
圖2-13氮化鈦感測薄膜N2 ratio 20%快速熱退火700℃之遲滯 - 35-
圖2-14氮化鈦感測薄膜N2 ratio 20%快速熱退火800℃之遲滯 - 35-
圖2-15氮化鈦感測薄膜EIS結構life time之感測度(a)及線性度(b) 趨勢圖 - 36-
圖2-16氮化鈦感測薄膜於鉀離子之感測度趨勢 - 37-
圖2-17氮化鈦感測薄膜於鉀離子之線性度趨勢 - 37-
圖2-18氮化鈦感測薄膜於鉀離子pk2到pk0之感測度趨勢 - 38-
圖2-19氮化鈦感測薄膜於鉀離子pk2到pk0之線性度趨勢 - 38-
圖2-20氮化鈦感測薄膜EIS結構於氮氣中快速熱退火800℃之C-V特性曲線 - 39-
圖2-21氮化鈦感測薄膜EIS結構於氮氣中快速熱退火800℃之感測度及線性圖 - 39-
圖2-22氮化鈦感測薄膜正常化後之pK2到pK0平帶電壓趨勢圖 - 40-
圖2-23 氮化鈦感測薄膜N2 ratio 14%於氮氣快速熱退火之AFM - 40-
圖2-24 氮化鈦感測薄膜N2 ratio 10% 與20% XPS 氧原子數據分析圖 - 41-

第三章
圖3-1氮氧化矽鈦於pH 4量測頻率之C-V特性曲線圖 - 55-
圖3-2製程流程圖 - 56-
圖3-3氮氧化矽鈦感測薄膜未經快速熱退火EIS結構C-V特性曲線 - 56-
圖3-4氮氧化矽鈦感測薄膜未經快速熱退火EIS結構感測度及線性圖 - 57-
圖3-5氮氧化矽鈦感測薄膜EIS結構於氮氣中快速熱退火600℃之C-V特性曲線圖 - 57-
圖3-6氮氧化矽鈦感測薄膜EIS結構於氮氣中快速熱退火600℃之感測度及線性圖 - 58-
圖3-7氮氧化矽鈦感測薄膜EIS結構w/o快速熱退火及氮氣中快速熱退火線性度趨勢 - 58-
圖3-8氮氧化矽鈦感測薄膜EIS結構於調變矽靶材射頻功率之pH感測度趨勢 - 59-
圖3-9氮氧化矽鈦感測薄膜EIS結構於W/O快速熱退火及經過快速熱退火製程之pH感測度趨勢 - 59-
圖3-10氮氧化矽鈦感測薄膜W/O快速熱退火之遲滯 - 60-
圖3-11氮氧化矽鈦感測薄膜氧氣中快速熱退火600℃之遲滯 - 60-
圖3-12氮氧化矽鈦感測薄膜氧氣中快速熱退火700℃之遲滯 - 61-
圖3-13氮化鈦感測薄膜氧氣中快速熱退火800℃之遲滯 - 61-
圖3-14氮氧化矽鈦感測薄膜EIS結構life time之感測度(a)及線性度(b)趨勢圖 - 62-
圖3-15氮氧化矽鈦感測薄膜50W於鉀離子pk 5-pk 0之C-V特性曲線圖 - 63-
圖3-16氮氧化矽鈦感測薄膜50W於鉀離子pk 5到pk 0之感測度及線性圖 - 63-
圖3-17氮氧化矽鈦感測薄膜100W於鉀離子pk 5-pk 0之C-V特性曲線圖 - 64-
圖3-18氮氧化矽鈦感測薄膜100W於鉀離子pk 5到pk 0之感測度及線性圖 - 64-
圖3-19氮氧化矽鈦矽靶材射頻功率150W感測薄膜EIS結構W/O快速熱退火及於氮氣中快速熱退火EIS結構W/O快速熱退火及 於氮氣中快速熱退火線性度趨勢 - 65-
圖3-20氮氧化矽鈦矽靶材射頻功率150W感測薄膜EIS結構W/O快速熱退火及於氮氣中快速熱退火線性度趨勢 - 65-
圖3-21氮氧化矽鈦感測薄膜EIS結構於鉀離子pk 3-pk 0之C-V特性曲線圖 - 66-
圖3-22氮氧化矽鈦感測薄膜於鉀離子pk 3到pk 0之感測度及線性圖 - 66-
圖3-23氮氧化矽鈦感測薄膜正常化後之pK 3到pK 0平帶電壓趨勢圖 - 67-
圖3-24 氮化鈦與氮氧化矽鈦感測薄膜正常化後之pK平帶電壓趨勢圖 - 67-
圖3-25 氮氧化矽鈦感測薄膜150W於氮氣快速熱退火之AFM - 68-
圖3-26 氮氧化矽鈦感測薄膜不同矽靶材射頻功率 XPS矽原子數據分析圖 - 68-
[1] P. Bergveld, “Development of an ion-sensitive solid state device for neuro-physiological measurements”, IEEE Trans. Biomed.Eng., BME-17, pp. 70-71, 1970
[2] O. Leistiko, “The selectivity and temperature characteristic of ion sensitive field effect transistors”, Phys. Scr., 18, pp. 445-450, 1978
[3] M. Esashi and T. Matsuo, “Integrated Micro Multi Ion Sensor Using Field Effect of Semiconductor”, IEEE Trans. on Biomedical Engineering, BME-25, pp. 184-192, 1978
[4] M. Chen, “Electrochemical impedance spectroscopy study of Ta2O5 based EIOS pH sensors in acid environment”, Sensors and Actuators B: Chemical. B 192, pp. 399– 405, 2014
[5] J.-C. Chou and C.-Y. Weng, “Sensitivity and hysteresis effect in Al2O3 gate pH-ISFET Materials chemistry and physics”, Elsevier, Volume 71, Issue 2, Pages 120–124, 2001
[6] Y. Vlasov, et al, “Investigation of pH-sensitive ISFETs with oxideand nitride membranes using colloid chemistry methods, Sensors and Actuators: B. Chemical”, Elsevier, pp. 357-360, 1990
[7] C.-S. Lai, C.-M. Yang and T.-F. Lu, “pH sensitivity improvement on 8 nm thick hafnium oxide by post deposition annealing”, Electrochemical and solid-state letters, Volume 9, Issue 3, pp. G90-G92, 2006
[8] C.-S. Lai, C.-M. Yang and T.-F. Lu, “Thickness Effects on pH Response of HfO2 Sensing Dielectric Improved by Rapid Thermal Annealing”, Japanese Journal of Applied Physics, vol.45, Issue 4B, pp. 3807, 2006
[9] Y. Mourzina, T. Mai, A. Poghossian, Y. Ermolenko, T. Yoshinobu, Y. Vlasov, H. Iwasaki and M.J. Schoning, “K+-selective field-effect sensors as transducers for bioelectronic applications”, Electrochim. Acta, vol. 48, pp. 3333-3339, 2003
[10] D. N. Reinhoudt, et al, “Development of Durable K+-Selective Chemically Modified Field Effect Transistors with Functionalized Polysiloxane Membranes”, Anal. Chem. 66, pp. 3618-3623, 1994
[11] Z.M. Baccar, et al, “ K+-ISFET type micro sensors fabricated by ion implantation”, Mater. Chem. Phys. vol. 48, pp. 56-59 1997
[12] T.Ito, et al, “ISFET's with Ion-Sensitive Membranes Fabricated by Ion Implantation”, IEEE Transaction on Electron Devices, vol. ED-35, NO.1, January, 1988
[13] M. T. Pham and W. Hoffmann, “Ion-sensitive membranes fabricated by the ion-beam technique”, Sensors and Actuators, vol. 5,Issue 3, pp. 217-228, 1984
[14] P. Bergveld and A. Sibbald, “Analytical and Biomedical Applications of Ion-Selective Field-Effect Transistors”, Wilson and Wilson’s Comprehensive Analytical Chemistry, 1987
[15] W. M. Siu and R. S. C. Cobbold, “Basic Properties of the Electrolyte-SiO2-Si System: Physical and Theoretical Aspects”, IEEE Transactions on Electron Device, vol. ED-26, NO. 11, Nov. 1979
[16] V. A. Matylitskaya, W. Bock and B. O. Kolbesen, “Nitridation of niobium oxide films by rapid thermal processing”, Anal Bioanal Chem 390:1507-1515, 2008
[17] 薛守助,“金屬閘極與高介電層界面製程對高功函數閘極金氧半元件之電特性影響”,清華大學, 碩士論文, 2012
[18] 盧佳暐,“利用直流電非平衡磁控濺鍍系統製備氮化鈦鋯薄膜結構與性質之研究”,清華大學, 碩士論文, 2012
[19] W. Bunjongpru, “Very low drift and high sensitivity of nanocrystal-TiO2 sensing membrane on pH-ISFET fabricated by CMOS compatible process”, Applied Surface Science 267, 206-211, 2013
[20] T. M. Pan and J. C. Lin, “Effects of Post-Deposition Annealing and Oxygen Content on the Structural and pH-Sensitive Properties of Thin Nd2O3 Films”, IEEE Sens. J., 9, 1173, 2009
[21] T. M. Pan and K. M. Liao, “Comparison of structural and sensing characteristics of Pr2O3 and PrTiO3 sensing membrane for pH-ISFET application ”, Sens. Actuators B, 133, 97, 2008
[22] T.-M. Pan and K.-M. Liao, “Structural and Sensing Properties of High-k PrTiO3 Sensing Membranes for pH-ISFET Applications”, IEEE Trans Biomed Eng, 56, 471, 2009
[23] T.-M. Pan, “Thin Sm2TiO5 Film Electrolyte Insulator Semiconductor for pH Detection and Urea Biosensing”, Journal of The Electrochemical Society, 157 (8) J275-J280 ,2010
[24] 江資聞, “Ion selectivity Improvements of Niobium oxide by phase Modification”, 長庚大學, 碩士論文, 2013
[25] K. Nomura, et al, “Amorphous oxide semiconductors for high-performance flexiblethin-film transistors”, Japanese Journal of Applied Physics, vol. 45, pp. 4303-4308, 2006
[26] T. Zednicek, S. Zednicek and Z. Sita, “Niobium Oxide Technology Roadmap”, AVX Czech Republic s.r.o.
[27] E. Gusev, “Defects in High-k Gate Dielectric Stacks Mathematics”, Physics and Chemistry, Vol. 220, 2006
[28] P. Bergveld, R. E. G. van Hal and J. C. T. Eijkel, “The remarkable similarity between the acid-base properties of ISFETs and proteins and the consequences for the design of ISFET biosensors”, biosensors &; bioelectronics 10, pp. 405-414, 1995
[29] T. -M. Pan, et al, “Structural and Sensing Properties of High-k Lu2O3 Electrolyte-Insulator-Semiconductor pH Sensors”, Manuscript submitted November 3, 2010; revised manuscript received December 13, 2010. Published February 11, 2011
[30] T. M. Pan and K. M. Liao, “Structural properties and sensing characteristics of Y2O3 sensing membrane for pH-ISFET”, Sens. Actuators B, 127, 480, 2007
[31] T. M. Pan, J. C. Lin, M. H. Wu and C. S. Lai, “Study of high-k Er2O3 thin layers as ISFET sensitive insulator surface for pH detection”, Sens. Actuators B, 138, 619, 2009
[32] T. M. Pan and K. M. Liao, “Development of a High-k Pr2O3 Sensing Membrane for pH-ISFET Application”, IEEE Sens. J., 8, 1856, 2008
[33] S.-C. Wang, “Single Si3N4 Layer on Dual Substrate for pH Sensing Micro Sensor”, SAS 2009 – IEEE Sensors Applications Symposium New Orleans, LA, USA - February 17-19, 2009
[34] C.-M. Yang, “Drift and Hysteresis Effects Improved by RTA Treatment on Hafnium Oxide in pH-Sensitive Applications”, Journal of The Electrochemical Society, 155, pp. J326-J330, 2008
[35] 楊家銘, “ISFET/REFET with Inorganic and Organic Ion-sensitive Membranes”, 長庚大學, 博士論文, 2005
[36] 呂增富, “氮化及氟化氧化鉿薄膜感測特性探討”, 長庚大學, 碩士論文, 2005
[37] 呂增富, “具可程式化結構與高介電感測薄膜之離子感測電晶體於生物感測之應用”, 長庚大學, 博士論文, 2010
[38] P.-K. Shina and T. Mikolajickb, “Alkali- and hydrogen ion sensing properties of LPCVD silicon oxynitride thin films”, Elsevier, accepted 14 ,January, 232-237, 2003
[39] L.-T. Yin, “Characteristics of Silicon Nitride after O2 Plasma Surface Treatment for pH-ISFET Applications”, IEEE Transactions on Biomedical Engineering, vol. 48, NO. 3, MARCH, 2001
[40] P.-K. Shina, “K ion sensing properties of sodium and aluminum coimplanted LPCVD silicon oxynitride thin films”, Applied Surface Science 207, pp. 351–358, 2003
[41] B. Hajji, “pH、pK and pNa detection properties of SiO2/Si3N4 ISFET chemical sensors”, Microelectronics Reliability 40, 783±786, 2000
[42] J. C. Chou, “Study on the amorphous tungsten trioxide ion-sensitive field effect Transistor” Sensors and Actuators B 66, pp. 106–108, 2000
[43] 楊宏熙, “二氧化鈦薄膜之延伸式閘極場效電晶體特性分析與應用於微機電系統技術之研究”,雲林科大, 碩士論文, 2006
[44] 蔣境昇, “1x4 線性陣列式酸鹼離子感測器之研製”, 中原大學, 碩士論文, 1992
[45] 鄭筱瑄, “酵素固定化之研究與釕生物感測器之研製”, 雲林科技大學, 碩士論文, 1996
[46] Naresh K and Pentaa, “Role of hydrogen bonding on the adsorption of several amino acids on SiO2 and Si3N4 and selective polishing of these materials using ceria dispersions”, Colloids and Surfaces A: Physicochem. Eng. Aspects 429, pp. 67–73, 2013
[47] T.-F. Lu and H.-C. Chuang, “ Effects of Thickness Effect and Rapid Thermal Annealing on pH Sensing Characteristics of Thin HfO2 Films Formed by Atomic Layer Deposition”, Japanese Journal of Applied Physics 50, 10PG03, 2011
[48] T.-M. Pan, “Thin Sm2TiO5 Film Electrolyte Insulator-Semiconductor for pH Detection and Urea Biosensing”, Journal of The Electrochemical Society, 157-8, J275-J280, 2010
[49] M. Chen, “Electrochemical impedance spectroscopy study of Ta2O5 based EIOS pH sensors in acid environment”, Sensors and Actuators B 192, pp. 399– 405, 2014
[50] 廖鴻仁, “鈦介層對於氮氧化鈦薄膜之相轉變與其相關性質的影響”, 清華大學, 碩士論文, 1998
[51] 馮俊傑, “Study on a home care system based on multi-biosensor”,中原大學, 碩士論文, 1996
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊