跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/20 18:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊寓翔
研究生(外文):Yu-Xiang Zhuang
論文名稱:以靜電紡絲技術發展含奈米結構之氣體微感測器
論文名稱(外文):Development of Nanofiber-based Gas Microsensors by Using Electrospun Technology
指導教授:張興政賴啟智
指導教授(外文):Hsing-Cheng ChangChi-Chih Lai
口試委員:張興政賴啟智洪三山
口試委員(外文):Hsing-Cheng ChangChi-Chih LaiSan-Shan Hung
口試日期:2013-06-27
學位類別:碩士
校院名稱:逢甲大學
系所名稱:自動控制工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:81
中文關鍵詞:靜電紡絲奈米纖維氧化銦氣體微感測器
外文關鍵詞:ElectrospinningNanofiberIndium oxideGas microsensors
相關次數:
  • 被引用被引用:1
  • 點閱點閱:427
  • 評分評分:
  • 下載下載:88
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用微機電系統技術開發具奈米特性之半導體金屬氧化物氣體微感測器,應用於感測一氧化碳氣體。當待測氣體吸附於感測薄膜表面時,由於蕭特基接觸而使薄膜產生電阻變化,藉由量測此電阻變化,可以獲得感測靈敏度。以靜電紡絲技術製作氧化銦奈米纖維感測薄膜,並利用光微影和蝕刻製程製作微型加熱器與指叉感測電極,將感測薄膜沉積於感測元件上,提高待測氣體與感測薄膜接觸面積,增加表面化學反應,有效提升元件操作性及加快反應時間。實驗探討氧化銦感測薄膜於不同電壓、流速、距離等操作變量對奈米纖維的影響,以及一氧化碳氣體濃度的靈敏度變化。本感測器整合了加熱器、溫度感測器與一氧化碳氣體感測器,藉由特性量測結果,探討製作之氣體微感測器特性。本感測器之加熱器在附加偏壓60 V時,最高溫度可達162 ℃,溫度感測器響應為線性其靈敏度為2.09 Ω/℃,氣體感測器最佳操作溫度為160 ℃;使用靜電紡絲氧化銦奈米纖維感測器之感測薄膜,量測一氧化碳濃度100到500 ppm,電阻變化率為1.082至1.804。
The research presents the design of metal-oxide semiconductor gas microsensors based on MEMS technology and nano-properties for sensing CO gas. Sensitivity is defined by measuring the variation of resistance for sensing layers caused by Schottky contanct when gas specimens adsorb on the surface of sensing films. In2O3 nanofibers sensing film with heaters is fabricated by electrospinning, lithography and deep etching processes. The devices can increase effective sensing area for chemical reactions on which CO gas molecules can be adsorbed to improve operation process and response time. Fabrication parameters of indium oxide sensing films are discussed at different voltage, flow rate, collection distance, to perform optimal nanofibers. The sensitivity for sensing the concentration of CO gas is concluded. This sensor integrated the heater temperature sensor and carbon monoxide gas sensor, with characteristic measurements as a result, validation and production of micro gas sensor characteristics are discussed. The heater of the sensor when additional 60 V, the highest temperature can reach 162 ℃, temperature sensor response to linear its sensitivity is 2.09 Ω/℃, gas sensor optimal operating temperature is 160 ℃. Electrostatic spinning wire sensor, measurement of carbon monoxide concentration of 50 to 500 ppm, resistance rate of 1.082 to 1.804.
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1前言 1
1.2 研究動機與目的 2
1.3 文獻探討 4
1.4 研究流程與架構 13
第二章 靜電紡絲技術與氣體感測原理 14
2.1 靜電紡絲製程原理 14
2.1.1 臨界電位 14
2.1.2一維穩態模型 16
2.2氣體感測器 18
2.2.1 蕭特基接觸 18
2.2.2 金屬氧化物氣體感測機制 20
2.2.3 無機材料與氧化銦特性 22
第三章 靜電紡絲製程與感測器設計 24
3.1靜電紡絲系統架構設計 24
3.1.1材料選用 24
3.2 靜電紡絲感測元件製作 25
3.2.1靜電紡絲感測溶液調配 27
3.2.2奈米纖維薄膜製作 27
3.3微感測元件設計 30
3.3.1光罩與蔽陰遮罩設計 31
3.3.2 微結構圖形設計 32
3.4 微感測元件製程規劃 34
第四章 量測與分析 37
4.1 靜電紡絲氧化銦奈米纖維分析 37
4.1.1紡絲時間與環境濕度影響 38
4.1.2 電壓對奈米纖維形態分析 41
4.1.3 流速對奈米纖維形態分析 44
4.1.4距離對奈米纖維型態分析 48
4.2氣體微感測元件製程 52
4.2.1加熱器與溫度感測器微影製程 53
4.2.2指叉感測電極製程 55
4.2.3靜電紡絲氧化銦感測薄膜製程 56
4.3氣體感測器靈敏度量測與分析 57
4.3.1 量測架構 57
4.3.2 加熱器與溫度感測器特性分析 58
4.3.3 感測薄膜性質量測 60
第五章 結論與未來工作 63
5.1 結論 63
5.2 未來發展 64
參考文獻 66
[1]李科杰,新編傳感器技術手冊,北京-國防工業出版社,2000年1月。
[2]A. Formhals, “Process and Apparatus for Preparing Artificial Threads,” US Patent, Vol. 1, pp. 975-504, 1934.
[3]S. Kacmaz, K. Ertekin, A. Suslu, M. Ozdemir, Y. Ergun, E. Celik and U. Cocen, “Emission Based Sub-nanomolar Silver Sensing with Electrospun Nanofibers,” Sensors and Actuators B: Chemical, Vol. 153, pp. 205-213, 2011.
[4]D. H. Reneker and I. Chun, “Nanometre Diameter Fibres of Polymer Produced by Electrospinning,” Nanotechnology, Vol. 7, pp. 216-223, 1996.
[5]S. Haider and S. Y. Park, “Preparation of the Electrospun Chitosan Nanofibers and Their Applications to the Adsorption of Cu(II) and Pb(II) Ions from an Aqueous Solution,” Journal of Membrane Science, Vol. 328, pp. 90-96, 2009.
[6]H. Fong, I. Chun and D.H. Reneker, “Beaded Nanofibers formed During Electrospinning,” Polymerm, Vol. 40, pp. 4585-4592, 1999.
[7]J. B. Ballengee and P. N. Pintauro, “Morphological Control of Electrospun Nafion Nanofiber Mats,” Electrochemical Society, Vol. 158, pp. 568-572, 2011.
[8]A. Murali, A. Barve, V. J. Leppert and S. H. Risbud, “Synthesis and Characterization of Indium Oxide Nanoparticles,” Nano Latters, Vol. 1, pp. 287-289, 2001.
[9]A. Gurlo, M. Ivanovskaya, N. Barsan and M. S. Berberich, U. Weimar, W. Gopel and A. Dieguez, “Grain Size Control in Nanocrystalline In2O3 Semiconductor Gas Sensors,” Sensors and Actuators B: Chemical, Vol. 44, pp. 327-333, 1997.
[10]J. Xu, X. Wang, G. Wang, J. Han and Y. Sun, “Solvothermal Synthesis of In2O3 Nanocrystal and Its Ethanol Sensing Mechanism,” Electrochemical and Solid-State Letters, Vol. 9, pp. 103-107, 2006.
[11]Y. Zhang, X. He, J. Li, Z. Miao and F. Huang, “Fabrication and Ethanol-sensing Properties of Micro Gas Sensor Based on Electrospun SnO2 Nanofibers,” Sensors and Actuators B: Chemical, Vol. 132, pp. 67-73, 2008.
[12]P. S. Khiabani, A. Hosseinmardi, E. Marzbanrad, S. Ghashghaie, C. Zamani, M. Keyanpour-Rad and B. Raissi, “NO2 Gas Sensor Fabrication Through AC Electrophoretic Deposition from Electrospun In2O3 Nanoribbons,” Sensors and Actuators B: Chemical, Vol. 162, pp. 102-107, 2012.
[13]B. Ding, M. Wang, X. Wang, J. Yu and G. Sun, “Electrospun Nanomaterrials for Ultrasensitive Sensors,” Materrials today, Vol. 13, pp. 16-27, 2010.
[14]B. Ding, J. Kim, Y. Miyazaki and S. Shiratori, “Electrospun Nanofibrous Membranes Coated Quartz Crystalmicrobalance as Gas Sensor for NH3 Detection,” Sensors and Actuators B: Chemical, Vol. 101, pp. 373-380, 2004.
[15]X. He, R. Arsat, A. Z. Sadek, W. Wlodarski, K. Kalantar-zadeh and Jianping Li, “Electrospun PVP Fibers and Gas Sensing Properties of PVP/36◦ YX LiTaO3 SAW Device,” Sensors and Actuators B: Chemical, Vol. 145, pp. 674 -679, 2010.
[16]I. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo and H. L. Tuller, “Ultrasensitive Chemiresistors Based on Electrospun TiO2 Nanofibers,” Nano Latters, Vol. 6, pp. 2009-2013, 2006.
[17]M. Yang, T. Xie, Liang Peng, Y. Zhao and D. Wang, “Fabrication and Photoelectric Oxygen Sensing Characteristics of Electrospun Codoped ZnO Nanofibres,” Applied Physics A, Vol. 89, pp. 427-430, 2007.
[18]R. Luoh and H. Thomas Hahn, “Electrospun Nanocomposite Fiber Mats as Gas Sensors,” Composites Science and Technology, Vol. 66, pp. 2436-2441, 2006.
[19]J. M. Corres, Y. R. Garcia and F. J. Arregui, “Optical Fiber Humidity Sensors Using PVdF Electrospun Nanowebs,” IEEE Sensors, Vol. 11, pp. 2383-2387, 2011.
[20]R. Takemori and H. Kawakami, “Electrospun Nanofibrous Blend Membranes for Fuel Cell Electrolytes,” Journal of Power Sources, Vol. 195, pp. 5957-5961, 2010.
[21]J. Hu, W. Chao, P. Lee and C. Huang, “Construction and Characterization of an Electrospun Tubular Scaffold for Small-diameter Tissue-engineered Vascular Grafts: A Scaffold Membrane Approach,” Journal of the Mechanical Behavior of Biomedical Materials, Vol. 13, pp. 140-155, 2012.
[22]G. I. Taylor and A. D. Mcewan, “The Stability of a Horizontal Fluid Interface in a Vertical Electric Field.” The Journal of Fluid Mechanics, Vol. 22, pp. 1-15, 1965.
[23]S. N. Reznik, A. L. Yaein, A. Theron and E. Zussman, “Transient and Steady Shapes of Droplets Attached to a Surface in a Strong Electric Field,” Journal of Fluid Mechanics, Vol. 516, pp.349-347, 2004.
[24]G. I. Taylor, “Electrically Driven Jets,” Proceedings of the Royal Society of London, Vol. 313, pp. 453-457, 1969.
[25]J. He, L. Xu, Y. Wu and Y. Liu, “Review Mathematical Models for Continuous Electrospun Nanofibers and Electrospun Nanoporous Microspheres,” Polymer International, Vol.56, pp. 1323-1329, 2007.
[26]S. R. Morrision, “Chemical Sensors,” Semiconductor Sensors, pp. 383-410, 1994.
[27]P. B. Weisz, “Effects of Electronic Charge Transfer between Adsorbate and Solid on Chemisorption and Catalysis,” The Journal of Chemical Physics, Vol. 21, pp.627-933, 1979.
[28]H. Windischmann, “A Model for the Operation of a Thin-Film SnO Conductance-Modulation Carbon Monoxide Sensor,” Journal of the Electrochemical Society, Vol. 126, pp. 627-633, 1979.
[29]D. Li, Y. Wang and Y. Xia, “Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays,” Nano Latters, Vol. 3, pp. 1167-1171, 2003.
[30]G. Zhang, W. Kataphinan, R. Teye-Mensah, P. Katta, L. Khatri, E.A. Evansa, G.G. Chase, R.D. Ramsier and D.H. Reneker, “Electrospun Nanofibers for Potential Space-based Applications,” Materials Science and Engineering B, Vol. 116, pp. 353-358, 2005.
[31]Y. Zhang, J. Li, Q. Li, L. Zhu, X. Liu, X. Zhong, J. Meng and X. Cao, “Preparation of In2O3 Ceramic Nanofibers by Electrospinning and Their Optical Properties,” Scripta Materialia, Vol. 56, pp. 409-412, 2007.
[32]P. Viswanathamurthi, N. Bhattarai, H. Y. Kim and D. R. Lee, “Vanadium Pentoxide Nanofibers by Electrospinning,” Scripta Materialia, Vol. 49, pp. 577-581, 2003.
[33]X. Lu, X. Liu, W. Zhang, C. Wang, Y. Wei, “Large-scale Synthesis of Tungsten Oxide Nanofibers by Electrospinning,” Journal of Colloid and Interface Science, Vol. 298, pp. 996-999, 2006.
[34]J. Yuh, L. Perez, W. M. Sigmund and J. C. Nino, “Electrospinning of Complex Oxide Nanofibers,” Physica E, Vol. 37, pp. 254-259, 2007.
[35]H. Odaka, Y. Shigesato, T. Murakami and S. Iwata, “Electronic Structure Analyses of Sn-doped In2O3,” Japanese Journal of Applied Physics, Vol. 40, pp. 3231-3235, 2001
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊