|
1. Nussenblatt, R.B., et al., Intraocular inflammatory disease (uveitis) and the use of oral tolerance: a status report. Ann N Y Acad Sci, 1996. 778: p. 325-37. 2. Ke, Y., et al., Retinal Astrocytes respond to IL-17 differently than Retinal Pigment Epithelial cells. J Leukoc Biol, 2009. 86(6): p. 1377-84. 3. Amadi-Obi, A., et al., TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1. Nat Med, 2007. 13(6): p. 711-8. 4. Nussenblatt, R.B., Basic and clinical immunology in uveitis. Jpn J Ophthalmol, 1987. 31(3): p. 368-74. 5. Silver, P.B., et al., The requirement for pertussis to induce EAU is strain-dependent: B10.RIII, but not B10.A mice, develop EAU and Th1 responses to IRBP without pertussis treatment. Invest Ophthalmol Vis Sci, 1999. 40(12): p. 2898-905. 6. Sudweeks, J.D., et al., Locus controlling Bordetella pertussis-induced histamine sensitization (Bphs), an autoimmune disease-susceptibility gene, maps distal to T-cell receptor beta-chain gene on mouse chromosome 6. Proc Natl Acad Sci U S A, 1993. 90(8): p. 3700-4. 7. Luger, D. and R.R. Caspi, New perspectives on effector mechanisms in uveitis. Semin Immunopathol, 2008. 30(2): p. 135-43. 8. Caspi, R.R., et al., T cell lines mediating experimental autoimmune uveoretinitis (EAU) in the rat. J Immunol, 1986. 136(3): p. 928-33. 9. Weaver, C.T., et al., Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity, 2006. 24(6): p. 677-88. 10. Damsker, J.M., A.M. Hansen, and R.R. Caspi, Th1 and Th17 cells: adversaries and collaborators. Ann N Y Acad Sci, 2010. 1183: p. 211-21. 11. Harrington, L.E., et al., Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol, 2005. 6(11): p. 1123-32. 12. Veldhoen, M., et al., TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity, 2006. 24(2): p. 179-89. 13. Park, H., et al., A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol, 2005. 6(11): p. 1133-41. 14. Mosmann, T.R. and R.L. Coffman, TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol, 1989. 7: p. 145-73. 15. Alvaro-Gracia, J.M., N.J. Zvaifler, and G.S. Firestein, Cytokines in chronic inflammatory arthritis. V. Mutual antagonism between interferon-gamma and tumor necrosis factor-alpha on HLA-DR expression, proliferation, collagenase production, and granulocyte macrophage colony-stimulating factor production by rheumatoid arthritis synoviocytes. J Clin Invest, 1990. 86(6): p. 1790-8. 16. Ferber, I.A., et al., Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol, 1996. 156(1): p. 5-7. 17. Jones, L.S., et al., IFN-gamma-deficient mice develop experimental autoimmune uveitis in the context of a deviant effector response. J Immunol, 1997. 158(12): p. 5997-6005. 18. Dalton, D.K., et al., Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science, 1993. 259(5102): p. 1739-42. 19. Cua, D.J., et al., Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature, 2003. 421(6924): p. 744-8. 20. Zhang, G.X., et al., Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-beta 2-deficient mice: IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system. J Immunol, 2003. 170(4): p. 2153-60. 21. Korn, T., et al., IL-17 and Th17 Cells. Annu Rev Immunol, 2009. 27: p. 485-517. 22. Aggarwal, S., et al., Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem, 2003. 278(3): p. 1910-4. 23. Langrish, C.L., et al., IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med, 2005. 201(2): p. 233-40. 24. Hirano, T., K. Ishihara, and M. Hibi, Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene, 2000. 19(21): p. 2548-56. 25. Akira, S., et al., Biology of multifunctional cytokines: IL 6 and related molecules (IL 1 and TNF). FASEB J, 1990. 4(11): p. 2860-7. 26. Korn, T., et al., IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature, 2007. 448(7152): p. 484-7. 27. Wei, L., et al., IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J Biol Chem, 2007. 282(48): p. 34605-10. 28. Ouyang, W., J.K. Kolls, and Y. Zheng, The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity, 2008. 28(4): p. 454-67. 29. Mangan, P.R., et al., Transforming growth factor-beta induces development of the T(H)17 lineage. Nature, 2006. 441(7090): p. 231-4. 30. Nurieva, R., et al., Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature, 2007. 448(7152): p. 480-3. 31. Zhou, L., et al., TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature, 2008. 453(7192): p. 236-40. 32. Manel, N., D. Unutmaz, and D.R. Littman, The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol, 2008. 9(6): p. 641-9. 33. Yang, L., et al., IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature, 2008. 454(7202): p. 350-2. 34. Luger, D., et al., Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J Exp Med, 2008. 205(4): p. 799-810. 35. Koenders, M.I., et al., Induction of cartilage damage by overexpression of T cell interleukin-17A in experimental arthritis in mice deficient in interleukin-1. Arthritis Rheum, 2005. 52(3): p. 975-83. 36. Elson, C.O., et al., Monoclonal anti-interleukin 23 reverses active colitis in a T cell-mediated model in mice. Gastroenterology, 2007. 132(7): p. 2359-70. 37. Hue, S., et al., Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J Exp Med, 2006. 203(11): p. 2473-83. 38. Ye, P., et al., Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med, 2001. 194(4): p. 519-27. 39. Higgins, S.C., et al., TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis: role of IL-17-producing T cells. J Immunol, 2006. 177(11): p. 7980-9. 40. Cua, D.J. and C.M. Tato, Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol, 2010. 10(7): p. 479-89. 41. Huber, M., et al., IL-17A secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis. J Clin Invest, 2013. 123(1): p. 247-60. 42. Nigam, P., et al., Loss of IL-17-producing CD8 T cells during late chronic stage of pathogenic simian immunodeficiency virus infection. J Immunol, 2011. 186(2): p. 745-53. 43. Rachitskaya, A.V., et al., Cutting edge: NKT cells constitutively express IL-23 receptor and RORgammat and rapidly produce IL-17 upon receptor ligation in an IL-6-independent fashion. J Immunol, 2008. 180(8): p. 5167-71. 44. Lockhart, E., A.M. Green, and J.L. Flynn, IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol, 2006. 177(7): p. 4662-9. 45. Yao, Z., et al., Herpesvirus saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. J Immunol, 2011. 187(9): p. 4392-402. 46. Toy, D., et al., Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J Immunol, 2006. 177(1): p. 36-9. 47. Yu, J.J. and S.L. Gaffen, Interleukin-17: a novel inflammatory cytokine that bridges innate and adaptive immunity. Front Biosci, 2008. 13: p. 170-7. 48. Mellett, M., et al., Orphan receptor IL-17RD tunes IL-17A signalling and is required for neutrophilia. Nat Commun, 2012. 3: p. 1119. 49. Kagami, S., et al., Circulating Th17, Th22, and Th1 cells are increased in psoriasis. J Invest Dermatol, 2010. 130(5): p. 1373-83. 50. Kobayashi, T., et al., IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn's disease. Gut, 2008. 57(12): p. 1682-9. 51. McAllister, F., et al., Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-alpha and granulocyte colony-stimulating factor in bronchial epithelium: implications for airway inflammation in cystic fibrosis. J Immunol, 2005. 175(1): p. 404-12. 52. Komiyama, Y., et al., IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol, 2006. 177(1): p. 566-73. 53. Rizzo, H.L., et al., IL-23-mediated psoriasis-like epidermal hyperplasia is dependent on IL-17A. J Immunol, 2011. 186(3): p. 1495-502. 54. Smith, E., et al., IL-17A inhibits the expansion of IL-17A-producing T cells in mice through "short-loop" inhibition via IL-17 receptor. J Immunol, 2008. 181(2): p. 1357-64. 55. Lin, P., E.B. Suhler, and J.T. Rosenbaum, The future of uveitis treatment. Ophthalmology, 2014. 121(1): p. 365-76. 56. O'Connor, W., Jr., et al., A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat Immunol, 2009. 10(6): p. 603-9. 57. Ke, Y., et al., Anti-inflammatory role of IL-17 in experimental autoimmune uveitis. J Immunol, 2009. 182(5): p. 3183-90. 58. Dick, A.D., et al., Secukinumab in the treatment of noninfectious uveitis: results of three randomized, controlled clinical trials. Ophthalmology, 2013. 120(4): p. 777-87. 59. Namba, K., et al., Identification of a peptide inducing experimental autoimmune uveoretinitis (EAU) in H-2Ak-carrying mice. Clin Exp Immunol, 1998. 111(2): p. 442-9. 60. Rizzo, L.V., et al., Establishment and characterization of a murine CD4+ T cell line and clone that induce experimental autoimmune uveoretinitis in B10.A mice. J Immunol, 1996. 156(4): p. 1654-60. 61. Shao, H., et al., Severe chronic experimental autoimmune uveitis (EAU) of the C57BL/6 mouse induced by adoptive transfer of IRBP1-20-specific T cells. Exp Eye Res, 2006. 82(2): p. 323-31. 62. Yoshimura, T., et al., Differential roles for IFN-gamma and IL-17 in experimental autoimmune uveoretinitis. Int Immunol, 2008. 20(2): p. 209-14. 63. Sonoda, K.H., et al., WSX-1 plays a significant role for the initiation of experimental autoimmune uveitis. Int Immunol, 2007. 19(1): p. 93-8. 64. Caspi, R.R., T. Kuwabara, and R.B. Nussenblatt, Characterization of a suppressor cell line which downgrades experimental autoimmune uveoretinitis in the rat. J Immunol, 1988. 140(8): p. 2579-84. 65. Shevach, E.M., Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity, 2009. 30(5): p. 636-45. 66. Josefowicz, S.Z. and A. Rudensky, Control of regulatory T cell lineage commitment and maintenance. Immunity, 2009. 30(5): p. 616-25. 67. Chen, L., et al., Diminished frequency and function of CD4+CD25high regulatory T cells associated with active uveitis in Vogt-Koyanagi-Harada syndrome. Invest Ophthalmol Vis Sci, 2008. 49(8): p. 3475-82. 68. Jiang, H.R., L. Lumsden, and J.V. Forrester, Macrophages and dendritic cells in IRBP-induced experimental autoimmune uveoretinitis in B10RIII mice. Invest Ophthalmol Vis Sci, 1999. 40(13): p. 3177-85. 69. Avichezer, D., et al., Residues 1-20 of IRBP and whole IRBP elicit different uveitogenic and immunological responses in interferon gamma deficient mice. Exp Eye Res, 2000. 71(2): p. 111-8. 70. Avichezer, D., et al., Interphotoreceptor retinoid-binding protein (IRBP)-deficient C57BL/6 mice have enhanced immunological and immunopathogenic responses to IRBP and an altered recognition of IRBP epitopes. J Autoimmun, 2003. 21(3): p. 185-94.
|