|
[1] S. Arnborg, D.G. Corneil, and A. Proskurowski, Complexity of finding embeddings in a k-tree, SIAM Journal on Algebraic Discrete Methods, 8(1987), 277-284. [2] D. Bienstock, Graph searching, path-width, tree-width and related problems (a survey), in: F. Roberts, F. Hwang and C. Monma, eds., Reliability of Computer and Communication Networks, DIMACS series in Discrete Mathematics and Theoretical Computer Science, Vol 5, American Mathematic Society, 1991, 33-49. [3] H.L. Bodlaender, A partial $k$-arboretum of graphs with bounded treewidth, Technical Report UU-CS-1996-02, Department of Computer Science, Utrecht University, the Netherlands, 1996. [4] H.L. Bodlaender and T. Kloks, Efficient and constructive algorithms for the pathwidth and treewidth of graphs, Journal of Algorithms, 21(1996), 358-402. [5] H.L. Bodlaender, T. Kloks, and D. Kratsch, Treewidth and pathwidth of permutation graphs, SIAM Journal on Discrete Mathematics, 8(1995), 606-616. [6] H.L. Bodlaender, T. Kloks, D. Kratsch, and H. M\"{u}ller, Treewidth and minimum fill-in on d-trapezoid graphs, Technical Report UU-CS-1995-34, Department of Computer Science, Utrecht University, Utrecht, the Netherlands, 1995. [7] K.S. Booth and G.S. Leuker, Testing for consecutive ones property, interval graphs and graph planarity using PQ-tree algorithms, Journal of Computer System and Science, 13(1976), 335-379. [8] H.L. Bodlaender and R.H. M\"{o}hring, The pathwidth and treewidth of cographs, SIAM Journal on Discrete Mathematics, 6(1993), 181-188. [9] D. Bienstock and P. Seymour, Monotonicity in graph searching, Journal of Algorithms, 12(1991), 239-245. [10] A. Brandst\"{a}dt, J. Spinrad and L. Stewart, Bipartite permutation graphs are bipartite tolerance graphs, Congressus Numerantium, 58(1987), 165-174. [11] Ruay-Shung Chang, Single step graph search problem, Information Processing Letters, 40(1991), 107-111. [12] Ruay-Shung Chang, An optimal algorithm for edge searching an interval graph, Journal of Information Science and Engineering, 9(1993), 421-430. [13] Ruay-Shung Chang, J.Y. Hsiao and Chuan Yi Tang, Solving the single step graph searching problem by solving the maximum two-independent set problem, Information Processing Letters, 40(1991), 283-287. [14] T.H. Cormen, C.E., Leiserson and R.L. Rivest, Introduction to algorithms, The MIT Press, 1992. [15] D.G. Corneil, H. Lerchs and L. Stewart-Burlingham, Complement reducible graphs, Discrete Applied Mathematics, 3(1981), 163-174. [16] Moon-Jung Chung, F. Makedon, I.H. Sudborough, and J. Turner, Polynomial time algorithms for the min cut problem on degree restricted trees, SIAM Journal on Computing, 14(1985), 158-177. [17] I. Dagan, M.C. Golumbic and I. Pinter, Trapezoid graphs and their coloring, Discrete Applied Mathematics, 21(1988), 35-46. [18] N.D. Dendris, L.M. Kirousis and D.M. Thilikos, Fugitive-search games on graphs and related parameters, Theoretical Computer Science, 172(1997), 233-254. [19] S. Even, A. Pnueli and A. Lempel, Permutation graphs and transitive graphs, Journal of the Association Computing Machinery, 19(1972), 400-410. [20] J.A. Ellis, I.H. Sudborough, and J.S. Turner, The vertex separation and search number of a graph, Information and Computation, 113(1994), 50-79. [21] M. Farber, Characterizations of strongly chordal graphs, Discrete Mathematics, 43(1983), 173-189. [22] C. Flotow, On powers of $m$-trapezoid graphs, Discrete Applied Mathematics, 63(1995), 187-192. [23] F.V. Fomin, Helicopter search problems, bandwidth and pathwidth, Discrete Applied Mathematics, 85(1998), 59-70. [24] F.V. Fomin and N.N. Petrov, Pursuit-evasion and search problems on graphs, Congressus Numerantium, 122(1996), 47-58. [25] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, Journal of Combinatorial Theory Ser. B, 16(1974), 47-56. [26] F. Gavril, A recognition algorithm for the intersection graphs of directed paths in directed trees, Discrete Mathematics, 13(1975), 237-249. [27] M.C. Golumbic, Algorithmic graph theory and perfect graphs, Academic Press, New York, 1980. [28] P.A. Golovach, Extremal searching problems on graphs, Ph. D. thesis, Leningrad, 1990 (in Russian). [29] P.A. Golovach, Search number, node search number, and vertex separator of a graph, Vestnik Leningradskogo Universiteta. Mathematika, 24(1991), 88-90. [30] J. Gustedt, On the pathwidth of chordal graphs, Discrete Applied Mathematics, 45(1993), 233-248. [31] P.C. Gilmore and A.J. Hoffman, A characterization of comparability graphs and of interval graphs, Can. J. Math., 16(1964), 539-548. [32] P.A. Golovach and N.N. Petrov, The search number of a complete graph, Vestnik Leningradskogo Universiteta. Mathematika, 19(1986), 15-19. [33] F. Harary, A characterization of block graphs, Canadian Mathematic Bull, 6(1963), 1-6. [34] E. Howorka, On metric properties of certain clique graphs, Journal of Combinatorial Theory Ser. B, 27(1979), 67-74. [35] M. Habib and R.H. M\"{o}hring, Treewidth of cocomparability graphs and a new order-theoretical parameter, Order, 11(1994), 47-60. [36] P.L. Hammer and B. Simeone, The splittance of a graph, Combinatorica, 1(1981), 275-284. [37] N.G. Kinnersley, The vertex separation number of a graph equals its path-width, Information Processing Letters, 42(1992), 345-350. [38] T. Kloks, Treewidth--computations and approximations, Lecture Note in Computer Science 842, Springer-Verlag, Berlin, 1994. [39] T. Kloks, H. Bodlaender, H. M\"{u}ller, and D. Kratsch, Computing treewidth and minimum fill-in: all you need are the minimal separators, ESA''93, Lecture Note in Computer Science 726, 260-271, 1993. Erratum: ESA''94, Lecture Note in Computer Science 855, pp. 508, 1994. [40] T. Kloks, K. Kratsch and H. M\"{u}ller, Dominoes, WG''94, Lecture Note in Computer Science 903, 106-120, 1995. [41] L.M. Kirousis and C.H. Papadimitriou, Interval graph and searching, Discrete Mathematics, 55(1985), 181-184. [42] L.M. Kirousis and C.H. Papadimitriou, Searching and pebbling, Theoretical Computer Science, 47(1986), 205-218. [43] A. Kornai and Z. Tuza, Narrowness, pathwidth, and their application in natural language processing, Discrete Applied Mathematics, 36(1992), 87-92. [44] A.S. LaPaugh, Recontamination does not help to search a graph, Journal of the Association Computing Machinery, 40(1993), 224-245. [45] N. Megiddo, S.L. Hakimi, M.R. Garey, D.S. Johnson, and C.H. Papadimitriou, The complexity of searching a graph, Journal of the Association Computing Machinery, 35(1988), 18-44. [46] R.H. M\"{o}hring, Graph problems related to gate matrix layout and PLA folding, in: G. Tinnhofer et al., eds., Computational Graph Theory (Springer, Wien, 1990), 17-32. [47] R.H. M\"{o}hring, Triangulating graphs without asteroidal triples, Discrete Applied Mathematics, 64(1996), 281-287. [48] F. Makedon and I.H. Sudborough, On minimizing width in linear layouts, Discrete Applied Mathematics, 23(1989), 243-265. [49] B. Monien and I.H. Sudborough, Min cut is NP-complete for edge weighted trees, Theoretical Computer Science, 58(1988), 209-229. [50] F. Makedon, C.H. Papadimitriou and I.H. Sudborough, Topological bandwidth, SIAM Journal on Algebraic Discrete Methods, 6(1985), 418-444. [51] T.D. Parsons, Pursuit-evasion in a graph, in Y. Alavi and D.R. Lick, eds., Theory and applications of graphs, Springer-Verlag, New York, 1976, 426-441. [52] T.D. Parsons, The search number of a connected graph, Proc. 9th S-E Conf. on Combinatorics, Graph Theory, and Computing, 549-554, 1978. [53] N.N. Petrov, Pursuit problems without information about the evader, Differents. Uravn., 18(1982), 1345-1352. [54] Sheng-Lung Peng, Ming-Tat Ko, Chin-Wen Ho, Tsan-sheng Hsu, and Chuan Yi Tang, Graph searching on chordal graphs, ISAAC''96, Lecture Notes in Computer Science, 1178, 156-165, 1996. [55] Sheng-Lung Peng, Chin-Wen Ho, Tsan-sheng Hsu, Ming-Tat Ko, and Chuan Yi Tang, Edge and node searching problems on trees, to appear in Theoretical Computer Science, an extended abstract of this paper appears in COCOON''97, Lecture Note in Computer Science 1276, 284-293, 1997. [56] Sheng-Lung Peng, Chin-Wen Ho, Tsan-sheng Hsu, Ming-Tat Ko, and Chuan Yi Tang, A linear-time algorithm for constructing an optimal node-search strategy of a tree, COCOON''98, Lecture Note in Computer Science 1449, 279-288, 1998. [57] Sheng-Lung Peng, Ming-Tat Ko, Chin-Wen Ho, Tsan-sheng Hsu, and Chuan Yi Tang, Graph searching on some subclasses of chordal graphs, to appear in Algorithmica. [58] N.N. Petrov and S.A. Starostina, Minimal graphs with a search number less than four, Vestnik Leningradskogo Universiteta. Mathematika, 22(1989), 66-68. [59] A. Parra and P. Scheffler, How to use the minimal separators of a graph for its chordal triangulation, ICALP''95, Lecture Note in Computer Science 944, 123-134, 1995. [60] A. Parra and P. Scheffler, Characterizations and algorithmic applications of chordal graph embeddings, Discrete Applied Mathematics, 79(1997), 171-188. [61] N. Robertson and P.D. Seymour, Graph minors I. Excluding a forest, Journal of Combinatorial Theory Ser. B, 35(1983), 39-61. [62] P. Scheffler, A linear algorithm for the pathwidth of trees, in: R. Bodendiek and R. Henn, eds., Topics in Combinatorics and Graph Theory (Physica-Verlag, Heidelberg, 1990), 613-620. [63] P. Scheffler, Optimal embedding of a tree into an interval graph in linear time, Fourth Czechoslovakian Symposium on Combinatorics, Graphs and Complexity, in: J. Nesetril and M. Fiedler, eds., Annals of Discrete Mathematics 51 (North-Holland, 1992), 287-291. [64] P.D. Seymour and R. Thomas, Graph searching and a minimax theorem for tree-width, Journal of Combinatorial Theory Ser. B, 58(1993), 22-33. [65] A. Takahashi, S. Ueno, and Y. Kajitani, On the proper-path-decomposition of trees, Technical Report, CAS 91-74, IEICE, 1991. [66] A. Takahashi, S. Ueno, and Y. Kajitani, Mixed-searching and proper-path-width, Theoretical Computer Science, 137(1995), 253-268. [67] M. Yannakakis, A polynomial algorithm for the min-cut linear arrangement of trees, Journal of the Association Computing Machinery, 32(1988), 950-959.
|