跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 04:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王孝宇
研究生(外文):Wang, Xiao-Yu
論文名稱:針對多重及變動雜訊干擾下之心電圖濾波器實現
論文名稱(外文):The Implementation of the ECG Denoise Filter for Multiple and Variant Noises
指導教授:柯賢儒柯賢儒引用關係
指導教授(外文):Hsien-Ju Ko
口試委員:柯賢儒羅志鵬張清濠
口試委員(外文):Hsien-Ju KoBird C. LoChing-Haur Chang
口試日期:2015-06-25
學位類別:碩士
校院名稱:亞洲大學
系所名稱:光電與通訊學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:77
中文關鍵詞:稀疏正規型式心電圖無限脈衝響應有限精準度Matlab
外文關鍵詞:Sparse Normal-FormECGIIR filter bankfinite precisionMATLAB
相關次數:
  • 被引用被引用:1
  • 點閱點閱:348
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文使用了以稀疏正規型式 (sparse normal-form) 轉換將任何給定的狀態空間轉換為稀疏正規型式實現(realization)來達到高效率計算的目的,並藉由轉換後矩陣同時維持 normal-form 的特性而確保了系統在有限精準度實現下的強健性。此外,本論文使用了無限脈衝響應帶拒濾波器群 (filter bank) 來偵測心電圖當中的多重雜訊,並依據該濾波器群所設計出的演算法撰寫Matlab程式用以偵測多重頻段雜訊,並有效加以濾除。
In this Thesis, we use a sparse normal-form transformation matrix to transfer any original given realization to the sparse normal-form one. Such a realization is simulta-neously with high computational efficiency as well as strong robustness under finite precision implementations. In addition, we utilize the IIR filter bank and the developed algorithm to detect multiple noises in an ECG signal. Based on MATLAB program, the effectiveness of the algorithm is verified.
摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章緒論 1
1.1 研究背景 1
1.2 研究動機 4
1.3 研究目的 4
第二章 文獻探討 5
2.1 心電圖 5
2.1.1 歷史 5
2.1.2 原理 7
2.1.3 波形與間期 8
2.2 數位濾波器 10
2.2.1 濾波器原理 10
2.2.2 IIR數位濾波器 11
2.2.3 FIR數位濾波器 11
2.2.4 濾波器形式 12
第三章 研究方法 14
3.1 有限精準度濾波器已發展之相關成果 15
3.2 稀疏正規型式 (sparse normal-form) IIR數位濾波器設計 19
3.3 針對迷你ECG以IIR濾波器群(filter bank)為基礎的全新濾波器架構設計 23
第四章 數值範例探討 25
第五章 結論 44
參考文獻 45
附錄-程式碼 52
濾波器群參數 59


圖 1.1中華民國2012至2060年各年齡層人口比例推估圖(資料來源:經建會) 1
圖 2.1埃因托芬的心電圖描記裝置[29] 6
圖 2.2一秒時長的心電圖紙[29] 8
圖 2.3正常心電圖圖解[29] 9
圖 3.1採用SPARSE NORMAL-FORM實現的數位濾波器於16位元至8位元定點數的頻率響應及其極限環測試 22
圖 3.2針對迷你心電圖訊號雜訊處理的濾波器架構圖 23
圖 3.3經由圖 3.2計算後選出SNR較佳的候選者以CASCADE方式進行濾波 23
圖 4.1初始的心電圖訊號 26
圖 4.2加入雜訊後的心電圖訊號 28
圖 4.3 0.08~78.8HZ的帶通濾波器 29
圖 4.4 0~10HZ低通濾波器 30
圖 4.5心電圖的參考訊號 33
圖 4.6帶通濾波器群 35
圖 4.7局部放大後的帶拒濾波器群 35
圖 4.8選取後的濾波器 40
圖 4.9經過濾波後的心電圖訊號 42
圖 4.10放大後的初始心電訊號 43
圖 4.11放大後的經過濾波後的心電訊號 43

表 2.1心電圖主要的波形與間期[29] 9
表 4.1 0.08~78.8HZ帶通濾波器的參數 29
表 4.2 0~10HZ低通濾波器的參數 30
表 4.3參考訊號及濾波器群的SNR 37


[1]G. Li, and M. Gevers, “Optimal finite precision implementation of a state-estimate feedback con-troller,”IEEE Trans. Circuits Syst., vol.CAS-38, pp. 1487-1499, 1990.
[2]G. Li and M. Gevers, “Comparative study of finite wordlength effects in shift and delta operator pa-rameterizations,”IEEE Trans. Automat. Contr., vol. 38, pp.803-807, 1993.
[3]M. Gevers and G. Li, Parametrizations in Control, Estimation and Filtering Problems: Accuracy Aspects, Communications and Control Engineering Series. London, U.K.:Springer-Verlag, 1993.
[4]A.G. Madievski, B.D.O. Anderson, and M. Gevers, “Optimum realizations of sampled-data controllers for finite-word-length sensitivity minimiza-tion,”Automatica, vol. 31, pp. 367-379, 1995.
[5]Gang Li, “On pole and zero sensitivity of linear systems,”IEEE Trans. Circuits Syst., vol. 44, pp.583-590, 1997.
[6]G. Li, “On the structure of digital controllers with finite word length consideration,” IEEE Trans. Automat. Contr., vol. 43, pp. 689-693, 1998.
[7]R. H. Istepanian, G. Li, J. Wu, and J. Chu, “Analysis of sensitivity measures of finite-precision digital controller structures with closed-loop stability bounds”,IEE Proc.-Control Theory Appl., vol. 145, pp. 472-478, 1998.
[8]S. Chen, J. Wu, R. H. Istepanian, J. Chu, and J. F. Whiborne, “Optimising stability bounds of fi-nite-precision controller structures for sampled-data systems in the-operator domain,” IEE Proc.-Control Theory Appl., vol. 146, pp. 517-526, Nov. 1999.
[9]J. F. Whidborne, R. S. H. Istepanian, and J. Wu, “Reduction of controller fragility by pole sensitivity minimization,” IEEE Trans. Automat. Contr., vol. 46, pp. 320-325, 2001.
[10]J. Wu, S. Chen, G. Li, R.H. Istepanian, and J. Chu, “An improved closed-loop stability related measure for finite-precision digital controller realizations”, IEEE Trans. Automat. Contr., vol. 46, no. 7, pp. 1162-1166, 2001.
[11]J. Wu, S. Chen, G. Li, and J. Chu, “Constructing sparse realisations of finite precision digital controllers based on a closed-loop stability related measure,” IEE Proc.-Control Theory Appl., vol. 150, pp.61-68, 2003.
[12]Jun Wu, Sheng Chen, James F. Whidborne, and Jian Chu, “A unified closed-loop stability measure for fi-nite-precision digital controller realizations im-plemented in different representation schemes,” IEEE Trans. Automat. Contr., vol. 38, pp.816-822, 2003.
[13]Wen-Shyong Yu and Hsien-Ju Ko, “Improved eigenvalue sensitivity for finite precision digital controller Realisations via Orthogonal Hermitian Transform,” IEE Proc. Control Theory Appl., vol. 150, pp. 365-375, 2003.
[14]Jinxin Hao, Gang Li, and Wan, C, “Two classes of efficient digital controller structures with stability consideration,” IEEE Trans. Automatic Control, vol. 51, no.1, pp. 164 – 170, Jan. 2006.
[15]Jun Wu, Gang Li, Sheng Chen, and Jian Chu “ A μ-based optimal finite-word-length controller design,” Au-tomatica, vol. 44, pp. 3093-3099, 2008.
[16]Wen-Shyong Yu ,Hsien-Ju Ko and Cheng-Chi Lee “Analysis and Design of the FWL Digital Observ-er/Controller Implementations: Eigenvalue Sensitivity Approach,” International Journal of Innovative Computing, Information and Control (SCI, EI), vol.9, no.6 pp.3961-3987, 2010.
[17]J.H. Wilkinson, Rounding Errors in Algebraic Processes, Englewood Cliffs, NJ: Prentice Hall, 1963.
[18]B.-S. Chen and C.-T. Kuo, “Stability analysis of digital filters under finite word length effects,” IEE Proceedings, Pt. G, vol. 136, no. 4, pp. 167-172, 1989.9
[19]Hsien-Ju Ko and Wen-Shyong Yu, “Guaranteed robust stability of the closed-loop systems for digital controller implementations via orthogonal hermitian transform,” IEEE Trans. Syst., Man, Cybern., vol. 34, no. 4, pp. 1923-1932, 2004 .
[20]Hsien-Ju Koand Wen-Shyong Yu, “Sensitivity min-imization for controller implementations: Fixed-point approach,” American Control Conference (ACC 2004), Boston, Massachusetts, July 2, 2004
[21]Hsien-Ju Ko and Wen-Shyong Yu, “A Novel Approach to Stability Analysis of Fixed-Point Digital Filters under Finite Word Length Effects,”SICE Annual Conference 2008,Chofu, Tokyo, Japan, August 20-22, 2008
[22]M.A. Rotea and D. Williamson, “Optimal realizations of finite wordlength digital filters and controllers,” IEEE Trans. Circuits Syst. I, vol. 42, pp. 61-72, 1995.
[23]C. Xiao, “Improved L2-sensitivity for state-space digital system,” IEEE Trans. Signal Processing, vol. 45, pp. 837-840, 1997.
[24]Gang Li, “On pole and zero sensitivity of linear systems,” IEEE Trans. Circuits Syst., vol. 44, pp.583-590, 1997.
[25]T. Hinamoto, Y. Zempo, Y. Nishino, and W.-S. Lu, “An Analytical approach for the synthesis of two-dimensional state-space filter structures with minimum weighted sensitivity,” IEEE Trans. Circuits Syst. I, vol. 46, pp. 1172-1183, 1999.
[26]G. Li, M. Gevers, and Y. Sun, “Performance analysis of a new structure for digital filter implementation,” IEEE Trans. Circuits Syst. I, vol. 47, pp. 474-482, 2000.
[27]Alan V. Oppenheim and Roland W. Schafer, Dis-crete-Time Signal Processing, Prentice Hall, 1989
[28]Yong Ching Lim, Ya Jun Yu, Kok Lay Teo, and Saramaki, T., “FRM-Based FIR Filters With Optimum Finite Word-Length Performance,” IEEE Trans. Signal Pro-cessing, vol. 55, no.6, part 2, pp. 2914-2924, June 2007.
[29]維基百科,http://zh.wikipedia.org/wiki/ECG
[30]Sen M. Kuo and Woon-Seng Gan, Digital Signal Processors: Architectures, Implementations and Ap-plications, Prentice Hall, 2005.
[31]維基百科,http://zh.wikipedia.org/wiki/巴特沃斯濾波器
[32]維基百科,http://zh.wikipedia.org/wiki/切比雪夫濾波器
[33]維基百科,http://zh.wikipedia.org/wiki/橢圓函數濾波器
[34]Hsien-Ju Ko, Jeffrey J.P. Tsai, and Ching-Haur Chang, “Computationally efficient synthesis and guaranteed stability analysis for optimal finite-precision IIR digital filter implementations,” IEEE Transactions on Signal Processing, 2014 (Revised).
[35]Jiong Zhou, Gang Li, and Mingxuan Sun, “A structural view of stability in adaptive IIR filters,” IEEE Transactions on Signal Processing, vol. 54, no. 12, pp. 4828-4835, 2006.
[36]Michel Gevers and Gang Li, Parametrizations in Control, Estimation and Filtering Problems: Accuracy Aspects, Springer-Verlag, 1993.
[37]Hsien-Ju Ko, “Sparse Normal-Form Realizations for IIR Digital Filter Implementations,” Working Paper, 2015.
[38]Mark J.B., Atlas of Cardiovascular Monitoring, p. 130. New York: Churchill Livingstone, 1998. ISBN 0-443-08891-8.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊