跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/11 05:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王政嚴
研究生(外文):Cheng-Yen Wang
論文名稱:熵壘影響下的布朗傳輸性質─以隨機行走模型為探討對象
論文名稱(外文):Properties of Brownian Transport Under the Effects of Entropy Barriers — Focused on a Random-Walk Model
指導教授:曾玄哲
指導教授(外文):Hsen-Che Tseng
學位類別:博士
校院名稱:國立中興大學
系所名稱:物理學系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:40
中文關鍵詞:布朗運動熵壘熵壘傳輸隨機行走
外文關鍵詞:Brownian motionentropy barrierentropic transportrandom walk
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
受力的布朗粒子在通道中的傳輸是我們所要探討的主題。若傳輸的外在幾何限制隨著位置而改變,其效果就相當於對運動加上一道熵壘,相較於能量壘的情形,此時的傳輸過程會展現出相當不同的特徵行為,包括一種特有的標尺體制的出現。本文的主要工作是提出一個簡單的隨機行走模型,對熵壘傳輸過程作了離散化的描述後,再以數值方法檢驗那些從連續性描述得到有關熵壘傳輸的結論。我們的結果顯示,這類空間受限的傳輸,在離散化的描述下,除了會繼續保有部分已知的熵壘傳輸特徵之外,還另外具有在連續描述下所看不到的獨特行為,如粒子流會因受力程度的不同而對溫度有截然不同的相依關係,及粒子的遷移率對外力也不再是單調地依賴,而是存在一個最大值。此外,結果也顯示離散化的作法會導致標尺體制的破壞,然而透過降低模型的離散性,則可以得到一個關於標尺體制是如何地在連續化的過程中突現的簡單描述。
It''s a known fact that driven Brownian transport through a geometrical landscape exhibits characteristic dependence of current and diffusion upon both temperature and a driving force as well as a remarkable existence of a scaling regime. From a different standpoint, this paper has investigated a neat random-walk model aiming at uniformly-driven transports under geometrical confinement and yet subject to discrete description. The results show that in this discrete modeling, some of those representative characteristcs of entropic transport retain while the others, such as scaling behavior, don''t. In addition, two characteristics are observed which do not exist in the continuous model: a reverse dependence of current on noise strengths, and the existence of mobility optimization.
1 緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 簡介與背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 熵壘傳輸的連續描述、方法及主要結果. . . . . . . . . . . . . . . . . . 2
2 隨機行走模型及其傳輸性質. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 模型設定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 基本傳輸性質. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 平坦邊界的傳輸行為. . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 變化邊界的傳輸行為. . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2.1 粒子流遷移率. . . . . . . . . . . . . . . . . . . . . . 10
2.3.2.2 擴散係數. . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2.3 不同的邊界條件的影響. . . . . . . . . . . . . . . . . 17
3 標尺體制. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1 引言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 連續與離散模型的對應. . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 標尺體制的數值檢驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1 總結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 討論與展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
A 數值計算描述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
A.1 一般性討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
A.2 計算與數值檢驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
B 反射邊界條件的數值結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
[1] Mark Akeson, Daniel Branton, John J. Kasianowicz, Eric Brandin, and David W. Deamer. Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single rna molecules. Biophysical journal, 77(6):3227–3233, 12 1999.
[2] Angelo Cacciuto and Erik Luijten. Confinement-driven translocation of a flexible polymer. Physical Review Letters, 96(23):238104, June 16, 2006 2006.
[3] U. Gerland, R. Bundschuh, and T. Hwa. Translocation of structured polynucleotides through nanopores. Physical Biology, 1(1):19–26, 2004.
[4] R. Bundschuh and U. Gerland. Coupled dynamics of rna folding and nanopore translocation. Arxiv preprint q-bio.BM/0508004, 2005.
[5] Peter Gates, Kim Cooper, James Rae, and Robert Eisenberg. Predictions of diffusion models for one-ion membrane channels. Progress in biophysics and molecular biology, 53(3):153–196, 1989.
[6] Tom Chou and Detlef Lohse. Entropy-driven pumping in zeolites and biological channels. Phys.Rev.Lett., 82(17):3552–3555, Apr 1999.
[7] Chengde Mao, Weiqiong Sun, Zhiyong Shen, and Nadrian C. Seeman. A nanomechanical device based on the b-z transition of dna. Nature, 397(6715): 144–146, 01/14 1999. M3: 10.1038/16437; 10.1038/16437.
[8] Z. Siwy, I. D. Kosinska, A. Fulinski, and C. R. Martin. Asymmetric diffusion through synthetic nanopores. Phys.Rev.Lett., 94(4):048102, Feb 2005.
[9] Alexander M. Berezhkovskii and Sergey M. Bezrukov. Optimizing transport of metabolites through large channels: Molecular sieves with and without binding. Biophysical journal, 88(3):17, 2005.
[10] Andreas Schuring, Scott M. Auerbach, Siegfried Fritzsche, and Reinhold Haberlandt. On entropic barriers for diffusion in zeolites: A molecular dynamics study. The Journal of chemical physics, 116(24):10890–10894, 2002.
[11] D. Dubbeldam, E. Beerdsen, T. J. H. Vlugt, and B. Smit. Molecular simulation of loading-dependent diffusion in nanoporous materials using extended dynamically corrected transition state theory. The Journal of chemical physics, 122 (22):224712, 2005.
[12] Peter H‥anggi, Peter Talkner, and Michal Borkovec. Reaction-rate theory: fifty years after kramers. Rev.Mod.Phys., 62(2):251–341, Apr 1990.
[13] D. Reguera, G. Schmid, P. S. Burada, J. M. Rub′i, P. Reimann, and P. H‥anggi. Entropic transport: Kinetics, scaling, and control mechanisms. Physical Review Letters, 96(13):130603, April 7, 2006 2006.
[14] Robert Zwanzig. Diffusion past an entropy barrier. Journal of Physical Chemistry, 96(10):3926–3930, 1992.
[15] M. H. Jacobs. Diffusion processes. Springer New York, 1967.
[16] D. Reguera and J. M. Rub′i. Kinetic equations for diffusion in the presence of entropic barriers. Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 64(6):061106, Nov 2001.
[17] J.M. Rub′i. Mesoscopic non-equilibrium thermodynamics. Atti dellAccademia Peloritana dei Pericolanti, Classes di Scienze Fisiche, Matematiche e Naturali, 86.
[18] I. Santamaria-Holek, D. Reguera, and J.M. Rub′i. Diffusion in stationary flow from mesoscopic nonequilibrium thermodynamics. Physical Review E, 63(5): 51106, 2001.
[19] P. S. Burada, G. Schmid, D. Reguera, J. M. Rub′i, and P. H‥anggi. Biased diffusion in confined media: Test of the fick-jacobs approximation and validity criteria. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 75(5):051111, May 2007 2007.
[20] PS Burada, G. Schmid, P. Talkner, P. H‥anggi, D. Reguera, and J. M. Rub′i. Entropic particle transport in periodic channels. BioSystems, 93(1-2):16–22, 2008.
[21] P. S. Burada, P. H‥anggi, F. Marchesoni, G. Schmid, and P. Talkner. Diffusion in confined geometries. ChemPhysChem, 10(1), 2009.
[22] N. Laachi, M. Kenward, E. Yariv, and KD Dorfman. Force-driven transport through periodic entropy barriers. Europhysics Letters, 80(5):50009, 2007.
[23] D. S. Lemons. An introduction to stochastic processes in physics. Johns Hopkins University Press, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top