|
[1] Mark Akeson, Daniel Branton, John J. Kasianowicz, Eric Brandin, and David W. Deamer. Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single rna molecules. Biophysical journal, 77(6):3227–3233, 12 1999. [2] Angelo Cacciuto and Erik Luijten. Confinement-driven translocation of a flexible polymer. Physical Review Letters, 96(23):238104, June 16, 2006 2006. [3] U. Gerland, R. Bundschuh, and T. Hwa. Translocation of structured polynucleotides through nanopores. Physical Biology, 1(1):19–26, 2004. [4] R. Bundschuh and U. Gerland. Coupled dynamics of rna folding and nanopore translocation. Arxiv preprint q-bio.BM/0508004, 2005. [5] Peter Gates, Kim Cooper, James Rae, and Robert Eisenberg. Predictions of diffusion models for one-ion membrane channels. Progress in biophysics and molecular biology, 53(3):153–196, 1989. [6] Tom Chou and Detlef Lohse. Entropy-driven pumping in zeolites and biological channels. Phys.Rev.Lett., 82(17):3552–3555, Apr 1999. [7] Chengde Mao, Weiqiong Sun, Zhiyong Shen, and Nadrian C. Seeman. A nanomechanical device based on the b-z transition of dna. Nature, 397(6715): 144–146, 01/14 1999. M3: 10.1038/16437; 10.1038/16437. [8] Z. Siwy, I. D. Kosinska, A. Fulinski, and C. R. Martin. Asymmetric diffusion through synthetic nanopores. Phys.Rev.Lett., 94(4):048102, Feb 2005. [9] Alexander M. Berezhkovskii and Sergey M. Bezrukov. Optimizing transport of metabolites through large channels: Molecular sieves with and without binding. Biophysical journal, 88(3):17, 2005. [10] Andreas Schuring, Scott M. Auerbach, Siegfried Fritzsche, and Reinhold Haberlandt. On entropic barriers for diffusion in zeolites: A molecular dynamics study. The Journal of chemical physics, 116(24):10890–10894, 2002. [11] D. Dubbeldam, E. Beerdsen, T. J. H. Vlugt, and B. Smit. Molecular simulation of loading-dependent diffusion in nanoporous materials using extended dynamically corrected transition state theory. The Journal of chemical physics, 122 (22):224712, 2005. [12] Peter H‥anggi, Peter Talkner, and Michal Borkovec. Reaction-rate theory: fifty years after kramers. Rev.Mod.Phys., 62(2):251–341, Apr 1990. [13] D. Reguera, G. Schmid, P. S. Burada, J. M. Rub′i, P. Reimann, and P. H‥anggi. Entropic transport: Kinetics, scaling, and control mechanisms. Physical Review Letters, 96(13):130603, April 7, 2006 2006. [14] Robert Zwanzig. Diffusion past an entropy barrier. Journal of Physical Chemistry, 96(10):3926–3930, 1992. [15] M. H. Jacobs. Diffusion processes. Springer New York, 1967. [16] D. Reguera and J. M. Rub′i. Kinetic equations for diffusion in the presence of entropic barriers. Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 64(6):061106, Nov 2001. [17] J.M. Rub′i. Mesoscopic non-equilibrium thermodynamics. Atti dellAccademia Peloritana dei Pericolanti, Classes di Scienze Fisiche, Matematiche e Naturali, 86. [18] I. Santamaria-Holek, D. Reguera, and J.M. Rub′i. Diffusion in stationary flow from mesoscopic nonequilibrium thermodynamics. Physical Review E, 63(5): 51106, 2001. [19] P. S. Burada, G. Schmid, D. Reguera, J. M. Rub′i, and P. H‥anggi. Biased diffusion in confined media: Test of the fick-jacobs approximation and validity criteria. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 75(5):051111, May 2007 2007. [20] PS Burada, G. Schmid, P. Talkner, P. H‥anggi, D. Reguera, and J. M. Rub′i. Entropic particle transport in periodic channels. BioSystems, 93(1-2):16–22, 2008. [21] P. S. Burada, P. H‥anggi, F. Marchesoni, G. Schmid, and P. Talkner. Diffusion in confined geometries. ChemPhysChem, 10(1), 2009. [22] N. Laachi, M. Kenward, E. Yariv, and KD Dorfman. Force-driven transport through periodic entropy barriers. Europhysics Letters, 80(5):50009, 2007. [23] D. S. Lemons. An introduction to stochastic processes in physics. Johns Hopkins University Press, 2002.
|