跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 06:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇守梅
研究生(外文):Shou-Mei Su
論文名稱:考慮原物料存貨成本之最佳存貨管理
論文名稱(外文):Study on the Optimal Production Management Considering the Inventory Cost of Raw Material
指導教授:林賜德林賜德引用關係
指導教授(外文):Shy-Der Lin
學位類別:博士
校院名稱:中原大學
系所名稱:應用數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:59
中文關鍵詞:回收性不良品損耗性商品現值經濟生產批量(EPQ)原物料隨機過程存貨
外文關鍵詞:present valuerandom planning horizonraw materialsimperfect quality itemsEconomic Production Quantity (EPQ)Inventorydeteriorating itemsreusable
相關次數:
  • 被引用被引用:0
  • 點閱點閱:539
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
摘要
傳統的經濟生產批量(EPQ)模型是假設補充生產所需的原物料為及時的,而且相關費用僅包括生產作業成本、成品的存貨持有成本以及購買原物料的成本。但對於一個公司的管理者而言,還有一項成本問題是必須列入考慮的,那就是原物料的存貨持有成本。因為一般來講,若在週期開始時,即將所需的原物料一次購入,則原物料的存貨持有成本就會產生,所以將原物料的存貨持有成本加入相關總成本中,如此才算合理。此研究的主軸是將原物料的存貨持有成本加入經濟生產批量模型中,以此為基礎發展出新的模型結構,然後再依加入的變數後,各算出每一個模型的最低的相關總成本。
另外加入其他的變因有:成品是不良品或損耗性商品,以及用現值的觀點甚或隨機過程去討論衍生出來的經濟生產批量模型,讓模型與現實生活更加貼近一些。
對於環保問題,在近些年被熱烈地討論與重視,將來也仍然是重要課題。所以為了因應此問題,在原物料的部分將試著改用回收性原物料來取代新的原物料,以降低對環境的衝擊並增加在商業上的競爭力,所以此研究主要是以回收性的原物料為主,然後計算出模型的最佳相關總成本。
關鍵字: 存貨經濟生產批量(EPQ)、原物料、回收性、不良品、損耗性商品、現值、隨機過程





ABSTRACT
The traditional Economic Production Quantity (EPQ) assumes that the replenishments are instantaneous and the relevant cost only consists of setup cost, stock-holding cost of the finished goods and the purchasing cost of raw materials. To be a manager of a manufactory, one more issue that must be taken into consideration is the stock-holding cost of raw materials. Suppose all of the raw materials were bought at the beginning, the stock-holding cost for the raw materials would be generated. Regarding the factor, the stock-holding cost of raw material should be accounted into the relevant cost. The main concept of this research is to put the stock-holding cost of raw materials in the EPQ model. Based on this concept, we develop the new inventory models and the corresponding optimal policies.
There are some more elements will be considered for the EPQ models, they are described as follows: time value, deteriorating items, imperfect quality items, random planning horizon. The models will be useful and practical.
Environmental protection issues have been eagerly discussed and concerned in recent years, and they will still be in the years to come. To deal with these problems, the reusable raw materials are tented to replace the new raw materials to reduce the impact on the environment and increase the competition for business. Therefore most of the models are based on using reusable raw materials to find the optimal relevant cost. The upper and lower bounds are determined in this research in order to develop an algorithm used to compute the optimal cycle time. The analysis brings numerical examples into the algorithm in order to find the different cycle times. This research shows how the model is useful for current and future research.

Keywords: Inventory, Economic Production Quantity (EPQ), raw materials,reusable, imperfect quality items, deteriorating items, present value, random planning horizon





目錄 頁
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
CONTENTS VI
LIST OF FIGURES VII
第壹章 緒論
1 1.1 研究背景與目的 1
1.2 文獻探討 2
1.3 論文架構 4
第貳章 基本 EPQ 模型 5
2.1 前言 5
2.2 定義與符號 5
2.3 存貨模型 6
2.4 數值範例 11
2.5結論 11
第參章 損耗性產品的EPQ模型 12
3.1 前言 12
3.2 定義與符號 12
3.3 存貨模型 14
3.4 數值範例 22
3.5結論 22  
第肆章 考慮回收性原物料與不良產品的最佳存貨策略 23
4.1 前言 23
4.2 定義與符號 24
4.3 存貨模型 25
4.4 數值範例 37
4.5結論 38
第伍章 在隨機計劃週期下考慮現值的回收性原物料之最佳存貨策略 39
5.1 前言 39
5.2 定義與符號 39

5.3 存貨模型 40
54 數值範例 48
5.5結論 48
References 49
作者簡介 52

CONTENTS                                                                                   page 
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
CONTENTS VI
LIST OF FIGURES VII  
Chapter1  Introduction                                                   1
1.1 Research purposes and background 1
1.2 Literature review 2
1.3 Thesis Organization 4  
Chapter2  Basic EPQ models 5
2.1 Introduction 5
2.2 Definition and notations 5
2.3 The models 6
2.4 Numerical Examples 11
2.5 Conclusions 11
Chapter3  The EPQ model for deteriorating product 12
3.1 Introduction 12
3.2 Definition and notations 12
3.3 The models 14
3.4 Numerical Examples 22
3.5
Conclusions 22  
Chapter4  The optimal inventory policy considering the stockholding cost of reusable raw materials and imperfect items 23
4.1 Introduction 23
4.2 Definition and notations 24
4.3 The models 25
4.4 Numerical Examples 37
4.5
Conclusions 38
Chapter5  The optimal inventory policy for reusable items with random planning horizon considering present value 39
5.1 Introduction 39

5.2 Definition and notations 39
5.3 The models 40
5.4 Numerical Examples 48
5.5
Conclusions 48
References 49
作者簡介 52
LIST OF FIGURES Figure page
Figure 2.1 The EPQ model containing raw materials 9
Figure 2.2 The EPQ model containing reusable raw materials 10
Figure 2.3 The EPQ model containing imperfect-quality items 11
Figure 3.1 The inventory of raw materials and productions (can be repaired) 13
Figure 3.2 The inventory of raw materials and productions (cannot be repaired) 14
Figure 4.1 The EPQ model containing imperfect-quality items 24
Figure 5.1 Raw materials inventory level and productions inventory level 41 
References
[1] Aggarwal, S.P. and C.K. Jaggi. (1989). “Ordering Policy for Decaying Inventory,” International Journal of Systems Science, 20, 151-159.
[2] Chen, C., Lo, C. and Y. Liao. (2008). “Optimal lot size with learning consideration on an imperfect production system with allowable shortages,” International Journal of Production Economics, 113(1)
, 459–469.
[3] Chen, L.H. and F.S. Kang, (2010). “Coordination between vendor and buyer considering trade credit and items of imperfect quality,” International Journal of Production Economics, 123, 52–61.
[4] Chung, K.J. and S.D. Lin. (1995). “A Note on the Optimal Cycle Length with a Random Planning
Horizon,” The Engineering Economist, 40, 385-392.
[5] Chung, K.J. and S.D. Lin. (1998). “An Exact Solution of Cash Flow for an Integrated Evaluation of Investment in Inventory and Credit,” Production Planning and Control, 9, 360–365.
[6] Covert, R.P. and G.C. Philip. (1973). “An EOQ Model for Items with Weibull Distribution
Deterioration,” AIIE Transactions, 5, 323-326.
[7] Dave, U. (1979). “On a Discrete-in-Time Order-Level Inventory Model for Deterioration Items,” Journal of the Operational Research Society, 30, 49-354.
[8] El-Kassar, A.N., Salameh, M. and M. Bitar. (2012). “EPQ Model with Imperfect Quality Raw Material,” Mathematica Balkanica.
[9] Ghare, P.M. and G.F. Schrader. (1963). “A model for an exponentially decaying inventory,” Journal of Industrial Engineering, 14, 238-243.
[10] Harris F.W. (1915). “What Quantity to Make at Once,” In the Library of Factory Management,
vol. V. Operation and Costs, A. W. Shaw Company, Chicago, 47-36.
[11] Karakayali, I., Emir-Farinas, H. and E. Akcali. (2010). “Pricing and Recovery Planning for Demanufacturing Operations with Multiple Used Products and Multiple Reusable Components,” Computers and Industrial Engineering, 59, 55-63.
[12] Kim, Y.H., Philippatos, C.C. and K.H. Chung. (1986). “Evaluating Investments in Inventory Systems: A Net Present Value Framework,” The Engineering Economist, 31, 119–136.
[13] Kleber, R., Ninner, S. and G.P. Kies Muller. (2002). “A Continuous Time Inventory Model for a Product Recovery System with Multiple Options,” International Journal of Production Economics, 79, 121–141.
[14] Koh, S.G., Hwang, H. and C.S. Ko. (2002). “An Optimal Ordering and Recovery Policy for Reusable Items,” Computers and Industrial Engineering, 43, 59-73.
[15] Konstantaras, I. and S. Papachristos. (2008). “Note on: An Optimal Ordering and Recovery Policy for Reusable Items,” Computers and Industrial Engineering, 55(3), 729-734.
[16] Mak, K.L. (1982). “A Production Lot Size Inventory Model for Deteriorating Items,” Computers Industrial Engineering, 6, 309-317.
[17] Moon, I. and W. Yun. (1993). “An Economic Order Quantity Model with a Random Planning Horizon,” The Engineering Economist, 39, 77–86.
[18] Richter, K. (1996). “The Extended EOQ Repair and Wasted Disposal Model,” International Journal of Production Economics, 59, 463–467.
[19] Richter, K. (1996). “The Extended EOQ Repair and Wasted Disposal Model with Variable Setup Number,” European Journal of Operational Research, 96, 313–324.
[20] Richter, K. and I. Dobos. (1999). “Analysis of the EOQ Repair and Waste Disposal Problem with Integer Setup Numbers,” International Journal of Production Economics, 45, 443–447.
[21] Salameh, M. K. and M.Y. Jaber. (2000). “Economic Production Quantity Model for Items with Imperfect Quality”, International journal of production economics, Vol. 64, pp.59-64
[22] Schwaller, R.L. (1988). “EOQ under inspection costs”, Production a Pedagogical Note,” Decision
Sciences, 6, 383–398.
[23] Salameh, M.K. and A.N. El-Kassar. (2007). “Accounting for the Holding Cost of Raw Material in the Production Model,” Proceeding of BIMA Inaugural Conference, Sharjah. 72-81.
[24] Tadikamalla, P. R. (1978). “An EPQ inventory model for items with gamma distributed deterioration,” AIIE Transaction, 10, 100-103.
[25] Taft, E.W. (1918). ”The Most Economical Production Lot,” The Iron Age, 101, 1410-1412.
[26] Teng, J.T. (2006). “Discount Cash-Flow Analysis on Inventory Control under Various Supplier's Trade Credits,” International Journal of Operations Research, 3, 23-29.
[27] Trippi, R.R. and D.E. Lewin. (1974). “A Present Value Formulation of the Classical EOQ Problem,” Decision Sciences, 5, 30–35.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊