跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/12 08:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱育賢
研究生(外文):Yu-Xian Jhu
論文名稱:應用潛流式人工溼地淨化大樓景觀水池水質之含氮污染物效能之評估
論文名稱(外文):Feasibility Study of Subsurface Constructed Wetland on Water Purification of Nitrogen Contained Pollutant in Landscaping Pond
指導教授:錢紀銘錢紀銘引用關係
指導教授(外文):Jih-Ming Chyan
學位類別:碩士
校院名稱:嘉南藥理科技大學
系所名稱:環境工程與科學系暨研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:98
中文關鍵詞:潛流式人工溼地、景觀水池、氨氮、亞硝酸鹽、硝酸鹽
外文關鍵詞:subsurface constructed wetlandlandscaping pondammonia nitrogennitrite nitrogennitrate nitrogen.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:365
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
景觀水池的水質常因營養鹽中氮、磷含量過高而導致藻類大量繁殖,因此本研究則應用微型潛流式人工溼地 (subsurface constructed wetland) 的概念,進行淨化景觀水池水質之含氮污染物去除的可行性評估。本實驗系統包含上下水池以及水道,其水道則依據潛流式人工溼地的概念進行佈置。
本研究共進行四批次之實驗,均於水池中加入固定量之氯化銨,觀察其污染物的淨化情形。研究結果顯示,當環境溫度平均分別為17.9℃、21.9℃、27.0℃、30.8℃時,溫度對氨氮進行硝化作用的影響不大,而亞硝酸鹽氮與硝酸鹽氮則會受到溫度較大的影響,致使各批次實驗將水質淨化至背景值的時間亦不相同,其各批次實驗淨化水質所需的時間分別為72天、42天、35天、17天,因此溫度的上升將有助於提高降解的反應速度。
本研究另進行NO3--N的去除率探討,共進行三批次實驗。第一、二次實驗之NO3--N初始濃度為0.65 mg/L,其上下池及水道對於NO3--N的平均去除率分別為31.5%、32.3%、95.7%;第三次實驗之NO3--N初始濃度為2.7 mg/L,其上下池及水道對於NO3--N的平均去除率分別為 0%、14.9%、92.8%。综合結果顯示水道較不受NO3--N的濃度變化而影響其淨化效能,且均能保持90%以上的去除效果,此亦間接證實應用潛流式人工溼地於景觀水池對於容易累積在水池當中的NO3--N有顯著的去除效能。
The present research aimed to study the application of subsurface constructed wetland on the water purification of landscaping pond that containing nitrogen. The experimental system consists of upper pool (UP) and lower pool (DP) and waterways connected UP and DP which was designed according to the concept of subsurface constructed wetland layout.

In the initial stage, four batches of experiments were conducted to observe degradation of nitrogen contained pollutant under different atmospheric temperature. To evaluate the efficiency of the system, certain amount of ammonium chloride were added into the pool and the samples were taken to determine the concentration of ammonia nitrogen, nitrite nitrogen, and nitrate nitrogen. The obtained results showed that when the temperature was 17.9°C, 21.9°C, 27.0°C and 30.8°C, the effect of temperature was not obvious in the nitrification of ammonia nitrogen. However, the effect of temperature on nitrite and nitrate was significant. The reaction time for water purification was not the same in each batch of experiment. Four experimental batches needed 72 days, 42 days, 35 days and 17 days for water purification, respectively. In addition, increasing temperature can improve the degradation rate.

This study also performed three more batch experiments to explore the NO3- - N removal efficiency. The first and second batches used 0.65 mg/L of initial NO3- - N concentration. Results showed that the average NO3- - N removal rates were 31.5%, 32.3% and 95.7% at upper pool, lower pool and waterway, respectively. The third batch was used 2.7 mg/L of NO3- - N and the results revealed that at upper pool, lower pool and waterway, the average removal rates was 0%, 14.9% and 92.8%, correspondingly. The experimental results also showed that the purification efficiency of waterways was not obviously effect by higher concentration of NO3- - N which was more than 90% removal efficiency. From the experimental results, it can be concluded that the application of subsurface constructed wetland on landscaping pond was able to removal the NO3- - N from the pond.
中文摘要 I
Abstract II
誌謝 IV
目 錄 V
圖目錄 VII
表目錄 X
照片目錄 XI

第一章 前言 1
1-1 研究動機 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 溼地概述 3
2-1.1 溼地的定義 3
2-1.2 溼地對環境之貢獻 6
2-1.3 溼地對環境之價值 8
2-2 人工溼地概論 9
2-2.1 人工溼地的優缺點與研究應用 10
2-2.2 人工溼地類型 11
2-3 利用人工溼地去除含氮污染物之效能與相關研究文獻 18
第三章 實驗佈置與方法 25
3-1 研究設計流程 25
3-2 景觀水池之佈置與操作 26
3-2.1 景觀水池現況概述 26
3.2-2 栽種植物 29
3-3 景觀水池水質之採樣與分析 32
3-3.1 實驗方法、現測及採樣 32
第四章 結果與討論 34
4-1 景觀水池操作環境參數 34
4-1.1 水溫之變化特性 34
4-1.2 酸鹼值之變化特性 39
4-1.3 導電度之變化特性 43
4-1.4 氧化還原電位之變化特性 47
4-1.5 溶氧之變化特性 51
4-2 含氮污染物之降解效能評估 55
4-3 景觀水池系統之含氮污染物之日週期降解效能 61
4-3.1 景觀水池系統含氮污染物日降解實驗環境因子效能 61
4-3.2 景觀水池系統含氮污染物日降解效能 65
4-4 景觀水池潛流式人工溼地之硝酸鹽氮之降解效能 70
4-4.1 景觀水池潛流式人工溼地硝酸鹽氮降解實驗環境因子特性 70
4-4.2 人工溼地硝酸鹽氮降解實驗硝酸鹽之降解效能比較 86
4-5 景觀水池系統之孔隙率變化 90
第五章 結論與建議 91
5-1 結論 91
5-2對未來相關研究之建議 93
參考文獻 90
1.Ayaz, S.C., Akca, L., Treatment of wastewater by natural systems, Enveronment international, 26:189-195, 2001.
2.Chen, Z.M., Chen, B., Zhou, J.B., Li, Z., Zhou, Y., A vertical subsurface-flow constructed wetland in Beijing , Communications in Nonlinear Science and Numerical Simulation, pp.1986-1997, 2008.
3.Garcia, J., Aguirre, P., Barragan, J., Mujeriego, R., Effect of key design parameters on the efficiency of horizontal subsurface flow constructed wetlands, Ecological Engineering, 25:405-418, 2005.
4.Garcia, J., Capel, V., Castro, A., Ruiz, I., Soto, M., Anaerobic biodegradation tests and gas emissions from subsurface flow constructed wetlands, Bioresource Technology, 3044-3052, 2007.
5.Gersberg, R. M., Elkins, B.V., Lyon, S.R., Goldman, C.R., Role of aquatic plants in wastewater treatment by artificial wetlands, Water Research, 20(3):363-368, 1986.
6.Graven, P., Koster, C.G., Boon, J.J., Bouman, F., Functional aspects of mature seed coat of the Cannaceae, Springer Wien, Plant Systematics and Evolution, 205:223-240, 1997.
7.Grootjen, C.J., Bouman, F., Seed structure in Cannaceae: taxonomic and ecological implications, Annals of Botany Company, 61:363-371, 1988.
8.Haber, R., Perfler, R., Mayer, H., Constructed wetlands in Europe, Water Science and technology, 32(3):305-315, 1995.
9.Imai, K., Ichihashi, T., Studies on matter production of edible canna (Canna edulis Ker.), 1: Gas exchange characteristics of leaves in relation to light regimes, Japan. Jour. Crop Sci., 55(3):360-366, 1986.
10.Ji, G., Sun, T., Zhou, Q., Sui, X., Chang, S., Li, P., Constructed subsurface flow wetland for treating heavy oil-produced water of the Liaohe Oilfield in China, Ecological Engineering, 18(4):459-465, 2002.
11.Juwarkar, A.S., Oke,B., Juwarkar,A., Patnaik, S.M., Domestic wastewater treatment through constructed wetland in India, Water Science and Technology, 32(3):291-294, 1995.
12.Kadlec, R.H., Knight, R.L., Vymazal , J., Brix, H., Cooper, P., Haberl, R., Types of the constructed wetlands Constructed wetlands for pollution control, IWA Publishers, London, UK, 17-22, 2000.
13.Korkusuz, E.A., Beklioğlu, M., Demirer, G.N., Comparison of the treatment performances of blast furnace slag-based and gravel-based vertical flow wetlands operated identically for domestic wastewater treatment in Turkey, Ecological Engineering, 24:187-200, 2005.
14.Lee, M.A., Stansbury, J.S., Zhang, T.C., The effect of low temperatures on ammonia removal in a laboratory-scale constructed wetland. Water Environment Research, 71(3):340-347, 1999.
15.Li, L., Li, Y., Biswas, D.K., Nian, Y., Jiang, G., Potential of constructed wetlands in treating the eutrophic water: Evidence from Taihu Lake of China, Bioresource Technology, 99:1656-1663, 2007.
16.Luederitz, V., Eckert, E., Weber, M.L., Richard, A.L., Gersberg, M., Nutrient removal efficiency and resource economics of vertical flow and horizontal flow constructed wetlands. Ecological Engineering, 18:157-171, 2001.
17.Matamoros, V., Puigagut, J., García, J., Bayona, J.M., Behavior of selected priority organic pollutants in horizontal subsurface flow constructed wetlands: A preliminary screening, Chemosphere, 69:1347-1380, 2007.
18.Mitsch, W.J., Gosselink, J.G., Wetlands 2nd ed., pp.113-119, 1993a.
19.Mitsch, W. J., Gosselink, J. G., Wetlands 2 ed, Van Nostrand Reinhold, N.Y., 1993b.
20.Mitsch, W.J., Zhang, L., Anderson, C.J., Altor, A.E., Hernández, M.E., Creating riverine wetlands: Ecological succession, nutrient retention, and pulsing effects. Ecological Engineering, 25:510-527, 2005.
21.Morris, M.C., The effects of substrate particle size, depth and vegetation on ammonia removal in a vertical flow constructed wetland. in: J. Vymazal (Ed.) Nutrient Cycling and Retention in Natural and Constructed Wetlands. Backhuys Publishers, Leiden, The Netherlands, pp.31-40, 1999.
22.Nelson, M., Alling, A., Dempster, W.F., M. van Thillo, John Allen, Advantages of using subsurface flow constructed wetlands for wastewater treatment in space applications: ground-based mars base prototype, Elsevier Science Ltd, 31:1799-1804, 2003.
23.Odum, E.P., Fundamentals of Ecology. 3rd. ed. W.B. Saundrs. Company, Pholadelphia, London, Toronto, 1971.
24.Öövel, M., Tooming, A., Mauring, T., Mander, Ü., Schoolhouse wastewater purification in a LWA-filled hybrid constructed wetland in Estonia, Ecological Engineering, 29:17-26, 2007.
25.Spieles, D.J., Mitsch, W.J., The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands:a comparison of low-and high-nutrient riverine systems, Ecological Engineering, 14:77-91, 2000.
26.Stanford, G., Vander Pol, R.A., Dzienia, S., Denitrification rate in relation to total and extractable soil carbon, Soil Soc. Soc. Am. Proc., 39:284-289, 1975.
27.Sun, G., Zhao, Y., Allen, S., Enhanced removal of organic matter and ammoniacal-nitrogen in a column experiment of tidal flow constructed wetland system, Journal of Biotechnology, 89-197, 2005.
28.Terzakis, S., Fountoulakis, M.S., Georgaki, I., Albantakis, D., Sabathianakis, I., Karathanasis, A.D., Kalogerakis, N., Manios, T., Constructed wetlands treating highway runoff in the central Mediterranean region, Chemosphere, 141–149, 2008.
29.Verhoeven, J.T.A., Meuleman, A.F.M., Wetlands for wastewater treatment: Opportunitiesand limitations, Ecological Engineering, 12:5-12, 1999.
30.Visesmanee,V., Polprasert, C., Parkpian, P., Long-term performance of subsurface-flow constructed wetlands treating Cd wastewater, Journal of Environmental Science and Health, 43:765-771, 2008.
31.Vymazal, J., Brix, H., Cooper, P.F., Green, M.B., Haberl, R., Removal mechsnisms and types of constructed wetlands Constructed wetlands for wastewater treatment in Europe, Backhuys Publishers, Czech Rpublic, pp.17-66, 1998.
32.Williams, J.B., Zambrano, D., Ford, M.G., May, E., Butler, J.E., Constructed Wetlands for wastewater Treatment in Colombia, Water Science and Technology, 40(3):217-223, 1999.
33.于立平,溼地公園規劃策略之研究-以高雄縣鳥松溼地公園為例,碩士論文,國立中山大學海洋環境學系,第2-1~2-5頁,1997。
34.呂志宏,有機廢水之硝化與脫硝處理研究,大葉大學生物工程研究所碩士論文,2001。
35.呂阿牛、戴炳南,食用美人蕉品種比較試驗(二)雜糧作物試研究簡報,25,272-273,1984。
36.李黃允,以二階段人工溼地去除生活污水中之營養鹽,國立中山大學環境工程研究所,碩士論文,2001。
37.林欣怡,以礫石床人工溼地處理工業廢水,國立中山大學海洋環境及工程學研究所,碩士論文,2000。
38.林瑩峰、荊樹人、李得元、王姿文、陳益銘、王世榮、徐璋杰,利用人工溼地處理水產養殖池水污染物之研究,第24屆廢水處理技術研討會論文集,1999。
39.施孟亨,成大人工溼地維護管理之研究,國立成奶j學建築研究所,碩士論文,2006。
40.胡志清,以模廠型人工溼地處理煉油及煉鋼廠廢水之研究,國立中山大學海洋環境及工程學系碩士論文,第5~7頁,第10頁,2003。
41.袁菁、連興隆、黃世孟、陳郁文、方湜惠,人工溼地實驗模組應用於校園水源淨化之研究,第29屆廢水處理技術研討會論文,2004。
42.國際溼地保護公約,Ramsar Convention,1971。
43.陪鴙鶠B荊樹人、林瑩峰、林敏朝、翁正哲、李得元、施凱鐘、陳欽昭,以人工溼地降低醫院放流水中硝酸鹽濃度之研究,第28屆廢水處理技術研討會論文,2003。
44.陳怡伶,以複合式水平流人工溼地處理中高埋齡垃圾滲出水之研究,國立中山大學海洋環境及工程學系研究所,碩士論文,2006。
45.陳琪婷,以二氧化錳催化降解水中氨氮之研究,國立中山大學海洋環境及工程學系碩士論文,2003。
46.楊文瑜,台灣地區溼地規劃管理決策之研究-以關渡和無尾港為例,碩士論文,國立中山大學海洋環境學系,第1-2~1-3,第2-1~2-5頁,1999。
47.詹德昊、吳振斌、徐光來,複合垂直流構建溼地中有機物質積累與基質堵塞. 中國環境科學,23,第457- 461頁,2003。
48.潘忠政,整合鹼液吸收及光合作用以固定二氧化碳,大葉大學環境工程研究所碩士論文,2001。
49.錢紀銘、林健榮、陳意銘、萬孟瑋,人工溼地之污染釋出特性,中華民國環境工程學會2006廢水處理技術研討會,2006。
50.顏宛珍,以工溼地處理化糞池出流水之研究,國立臺灣科技大學化學工程研究所,碩士論文,2006。
51.羅瑋琪、楊磊,以人工溼地處理煉油及煉鋼廢水之研究,第27屆廢水處理技術研討會論文,2002。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top