1. Tewari, P.H., A.J. Hunt, and K.D. Lofftus, Ambient-temperature supercritical drying of transparent silica aerogels. Materials Letters, 1985. 3(9-10): p. 363-367.
2. Pierre, A.C. and G.M. Pajonk, Chemistry of Aerogels and Their Applications. Chemical Reviews, 2002. 102(11): p. 4243-4266.
3. Hu, C.-C., et al., Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous RuO2 for Next Generation Supercapacitors. Nano Letters, 2006. 6(12): p. 2690-2695.
4. Wang, D., et al., Hexagonal mesocrystals formed by ultra-thin tungsten oxide nanowires and their electrochemical behaviour. Chemical Communications, 2010. 46(41): p. 7718-7720.
5. Chang, X., et al., Assembly of tungsten oxide nanobundles and their electrochromic properties. Applied Surface Science, 2011. 257(13): p. 5726-5730.
6. Chang, K.-H., et al., Microwave-assisted hydrothermal synthesis of crystalline WO3–WO3•0.5H2O mixtures for pseudocapacitors of the asymmetric type. Journal of Power Sources, 2011. 196(4): p. 2387-2392.
7. Baeck, S.H., et al., Controlled Electrodeposition of Nanoparticulate Tungsten Oxide. Nano Letters, 2002. 2(8): p. 831-834.
8. Szymanska, D., et al., Effective charge propagation and storage in hybrid films of tungsten oxide and poly(3,4-ethylenedioxythiophene). Journal of Solid State Electrochemistry, 2010. 14(11): p. 2049-2056.
9. Zou, B.-X., et al., Electrodeposition and pseudocapacitive properties of tungsten oxide/polyaniline composite. Journal of Power Sources, 2011. 196(10): p. 4842-4848.
10. Djaoued, Y., S. Priya, and S. Balaji, Low temperature synthesis of nanocrystalline WO3 films by sol–gel process. Journal of Non-Crystalline Solids, 2008. 354(2–9): p. 673-679.
11. Tong, M., G. Dai, and D. Gao, WO3 thin film sensor prepared by sol–gel technique and its low-temperature sensing properties to trimethylamine. Materials Chemistry and Physics, 2001. 69(1–3): p. 176-179.
12. Cheng, W., et al., Synthesis and electrochromic properties of mesoporous tungsten oxide. Journal of Materials Chemistry, 2001. 11(1): p. 92-97.
13. Li, J., et al., Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. Journal of Power Sources, 2006. 158(1): p. 784-788.
14. Wei, T.-Y., et al., Cobalt Oxide Aerogels of Ideal Supercapacitive Properties Prepared with an Epoxide Synthetic Route. Chemistry of Materials, 2009. 21(14): p. 3228-3233.
15. Deepa, M., et al., Annealing induced microstructural evolution of electrodeposited electrochromic tungsten oxide films. Applied Surface Science, 2005. 252(5): p. 1568-1580.
16. Granqvist, C.G., Electrochromic tungsten oxide films: Review of progress 1993-1998. Solar Energy Materials and Solar Cells, 2000. 60(3): p. 201-262.
17. Khalfaoui, M., et al., New theoretical expressions for the five adsorption type isotherms classified by BET based on statistical physics treatment. Journal of Colloid and Interface Science, 2003. 263(2): p. 350-356.
18. Chen, L., et al., CeO
2–WO
3 Mixed Oxides for the Selective Catalytic Reduction of NO
x by NH
3 Over a Wide Temperature Range. Catalysis Letters, 2011. 141(12): p. 1859-1864.
19. Yang, H., D. Zhang, and L. Wang, Synthesis and characterization of tungsten oxide-doped titania nanocrystallites. Materials Letters, 2002. 57(3): p. 674-678.
20. Tomova, D., et al., Photocatalytic oxidation of 2,4,6-trinitrotoluene in the presence of ozone under irradiation with UV and visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2012. 231(1): p. 1-8.
21. Ham, D.J., et al., Hydrothermal synthesis of monoclinic WO3 nanoplates and nanorods used as an electrocatalyst for hydrogen evolution reactions from water. Chemical Engineering Journal, 2010. 165(1): p. 365-369.
22. Phuruangrat, A., et al., Synthesis of hexagonal WO3 nanowires by microwave-assisted hydrothermal method and their electrocatalytic activities for hydrogen evolution reaction. Journal of Materials Chemistry, 2010. 20(9): p. 1683-1690.
23. Song, Y.-Y., et al., Multistage Coloring Electrochromic Device Based on TiO2 Nanotube Arrays Modified with WO3 Nanoparticles. Advanced Functional Materials, 2011. 21(10): p. 1941-1946.
24. Brennan, M.P.J. and O.R. Brown, Carbon electrodes: Part 1. Hydrogen evolution in acidic solution. Journal of Applied Electrochemistry, 1972. 2(1): p. 43-49.
25. Moreno-Castilla, C. and F.J. Maldonado-Hódar, Carbon aerogels for catalysis applications: An overview. Carbon, 2005. 43(3): p. 455-465.
26. Pröbstle, H., M. Wiener, and J. Fricke, Carbon Aerogels for Electrochemical Double Layer Capacitors. Journal of Porous Materials, 2003. 10(4): p. 213-222.
27. Fischer, A.E., et al., Incorporation of Homogeneous, Nanoscale MnO2 within Ultraporous Carbon Structures via Self-Limiting Electroless Deposition: Implications for Electrochemical Capacitors. Nano Letters, 2007. 7(2): p. 281-286.
28. Hu, C.-C., Y.-T. Wu, and K.-H. Chang, Low-Temperature Hydrothermal Synthesis of Mn3O4 and MnOOH Single Crystals: Determinant Influence of Oxidants. Chemistry of Materials, 2008. 20(9): p. 2890-2894.
29. Du, X., et al., Electrochemical Performances of Nanoparticle Fe3O4/Activated Carbon Supercapacitor Using KOH Electrolyte Solution. The Journal of Physical Chemistry C, 2009. 113(6): p. 2643-2646.
30. Dini, D., F. Decker, and E. Masetti, A comparison of the electrochromic properties of WO
3 films intercalated with H
+, Li
+ and Na
+. Journal of Applied Electrochemistry, 1996. 26(6): p. 647-653.
31. Turyan, I., et al., Studying electron transfer at electrochromic tungsten oxide sol-gel films with scanning electrochemical microscopy (SECM). Physical Chemistry Chemical Physics, 2003. 5(15): p. 3212-3219.
32. Patel, K.J., et al., An investigation of the insertion of the cations H+, Na+, K+ on the electrochromic properties of the thermally evaporated WO3 thin films grown at different substrate temperatures. Materials Chemistry and Physics, 2010. 124(1): p. 884-890.
33. Hung, P.-J., et al., Ideal asymmetric supercapacitors consisting of polyaniline nanofibers and graphene nanosheets with proper complementary potential windows. Electrochimica Acta, 2010. 55(20): p. 6015-6021.
34. Jeong, Y.U. and A. Manthiram, Amorphous Tungsten Oxide/Ruthenium Oxide Composites for Electrochemical Capacitors. Journal of The Electrochemical Society, 2001. 148(3): p. A189-A193.
35. Khomenko, V., E. Raymundo-Piñero, and F. Béguin, Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium. Journal of Power Sources, 2006. 153(1): p. 183-190.
36. Brinker,C.J. and G.W. Scherer,Sol-Gel Science."The Physics and Chemistry of Sol-Gel
Processing,"Academic Press, New york (1999)
37. Newman,J.,"Electrochemical systems,"Prentice-Hall,N.J. (1972)
38. Pierre,A.C. and G.M. Pajonk, "Chemistry of aerogels and their applications,"Chem.
Rev.,102,4243, (2002)
39. Pletcher,D.,"Industrial electrochemistry,"CHAPMAN &; HALL,N.Y. (1984)
40. Jeffrey W. Long,” Asymmetric electrochemical capacitors—Stretching the limits of aqueous
electrolytes,” MRS Bulletin, vol 36, (2011)
41. 林佑勳,"含氧化錳複合氣凝膠在超級電容器之應用",國立清華大學化工研究所碩士論文,(2010)
42. 簡馨綺,"以容膠凝膠法製備氧化鎳鈷氣凝膠及其複合材料於產氫及儲能之應用"國立清華大學化工研究所碩士論文,(2011)43. 洪卿雲,"以脈衝-休止法製備錳氧化物奈米線應用於超級電容器,"國立清華大學化工
研究所碩士論文,4-5(2009)
44. 張光輝,"循環伏安法製備含水釕銥氧化鎢於電化學電容器的應用,"國立中正大學化
工研究所碩士論文,2(2000)
45. 盧偉珠,"高校的金屬氧化物氣凝膠觸媒,"化工資訊,四十八期, 58-65(2001)46. 魏得育和呂世源,"最輕的固體 氣凝膠,"科學發展, 402期, 60-65 (2006)