跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/05 06:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊苗佳
研究生(外文):Miao-Chia Yang
論文名稱:以CRISPR/Cas9技術建立GLA剔除細胞株作為法布瑞氏症藥物篩選平台
論文名稱(外文):Using CRISPR/Cas9-Mediated GLA-null Cell Lines as An In Vitro Drug Screening Model for Fabry Disease
指導教授:邱士華邱士華引用關係
指導教授(外文):Shih-Hwa Chiou
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:81
中文關鍵詞:法布瑞氏症CRISPR / Cas9基因剪輯系統酵素替代療法藥物篩選
外文關鍵詞:Fabry diseaseCRISPREnzyme replacement therapy (ERT)Drug screening
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
法布瑞氏症(Fabry disease)為一種罕見的性聯遺傳隱性之溶小體醣脂類儲積症,主要是一種負責製造α -半乳糖甘酵素的基因缺陷,缺陷會造成醣脂質globotriaosylceramide (GL-3) 無法被代謝,這些醣脂質會堆積在心臟、腎臟、皮膚和其他不同組織的溶小體中,造成各種器官的傷害。目前法布瑞氏症的治療方式為酵素替代療法,是透過給予重組人體alpha Gal A (rh-α-GLA)來清除細胞內無法被清除而累積的GL-3。然而,rh-α-GLA用來清除GL3也有其限制,rh-α-GLA在細胞生理中較不穩定,容易迅速地被降解。此外,目前在體外缺乏適當的疾病模式作為提高酵素替代療法治療的醫藥研究。因此,建立一個法布瑞氏症的細胞模式作為篩選有潛力藥物的平台來延長酵素替代療法的效力是有其價值的。為了製造GLA基因的缺陷,我們使用CRISPR / Cas9基因剪輯系統去除HEK293T細胞中GLA基因,使細胞中完全檢測不出內生性GLA的蛋白表現量和酵素活性,作為提供一個空白的背景以檢測rh-α-GLA在細胞中的藥物動力學。而rh-α-GLA在剃除GLA的細胞中會隨著時間延長而降解,其半衰期約為24小時,因此我們想利用rh-α-GLA與有潛力的藥物或小分子共同作用在此一細胞株上,觀察是否可延長GLA的活性。首先,我們發現chaperone N-butyldeoxygalactonojirimycin (NB-DGJ) 和蛋白酶抑制劑E64分別與rh-α-GLA作用在細胞上後,相較於單獨給予rh-α-GLA可以延長rh-α-GLA的活性兩倍之多,除此之外,rh-α-GLA與NB-DGJ或E64合併作用後也可以減少更多的GL-3在法布瑞氏症病人纖維母細胞中的累積量。有鑑於此方法可以有效的鑑定有潛力的藥物是否可以延長rh-α-GLA的效力,於是我們廣泛篩選64個藥物以期找尋到更多可以延長rh-α-GLA活性的藥物,並且發現諸如Calpain inhibitor II、E64C、 2-NBDG、β-D-Galactose pentapivalate、2-Deoxy-D-galactose、Finasteride、Diazepam、 Theophylline、Trazodone、Benzamidine、3-Methyladenine、Carbamazepine、 Selegiline、Sulpiride和Fluorouracil等藥物能有效延長rh-α-GLA在細胞內的活性。總結本研究,經由建立剔除GLA基因的細胞株,能有效的作為體外篩選藥物的平台,進而篩選可延長rh-α-GLA活性的藥物,以避免rh-α-GLA在人體中快速地被降解。
Fabry disease is a hereditary, X-linked lysosomal storage disease resulting from deficient activity of the lysosomal α-galactosidase A. It leads to progressive accumulation of glycosphingolipids particularly globotriaosylceramide (GL-3) in lysosomes of the heart, kidneys, skin and various tissues. Regular administration of recombinant human alpha Gal A (rh-α-GLA), termed enzyme replacement therapy (ERT) is currently available as the only effective treatment for the Fabry patients with GL-3 accumulation. However, the rh-α-GLA driven GL-3 clearance has the limitations, i.e. rh-α-GLA is physiologically instable and quickly degraded in cells. Moreover, lacking of an appropriate in vitro disease model restricted the pharmaceutical studies for improving the ERT treatment. Therefore, it is worth to establish a cell model of Fabry disease (FD) as the platform to screen the potential candidates for prolonging its potency. By utilizing the CRISPR/Cas9 genome editing system, we generated the GLA disruption in HEK293T cells that was completely devoid of detectable GLA protein expression and enzyme activity, providing a clear background to investigate rh-α-GLA cellular pharmacokinetics. The administrated rh-α-GLA was decreased with time and had a half-life of 24 hrs in the GLA-null cells. Base on the GLA deficient cell line, we applied to discover the potential drug or small molecular to restore rh-α-GLA activity. Co-treatment of chaperone drug, N-butyldeoxygalactonojirimycin (NB-DGJ), and protease inhibitor, E64, with ERT significantly prolonged rh-α-GLA activity by over two-folds compared to ERT alone. In addition, NB-DGJ and E64 significantly decreased GL-3 accumulation in the Fabry patients-derived fibroblast. Next, we expanded the screening range of drug and identified the activity for discovering other potential drugs. We screened 64 drugs combining ERT in GLA-null cells and discovered that Calpain inhibitor II, E64C, 2-NBDG, β-D-Galactose pentapivalate, 2-Deoxy-D-galactose, Finasteride, Diazepam, Theophylline, Trazodone, Benzamidine, 3-Methyladenine, Carbamazepine, Selegiline, Sulpiride and Fluorouracil could prolong rh-α-GLA activity. By creating this model, we provide a novel in vitro tool with which to screen potential compounds to avoid short period of GLA activity in human body.
Contents

中文摘要................................ i
Abstract............................... iii
Contents............................... v
List of Figures........................ vii
List of Tables......................... ix
Chapter 1 Introduction..................1
1.1 Fabry disease...................... 2
1.2 Enzyme replacement therapy (ERT)... 4
1.3 CRISPR/Cas system.................. 5
1.4 Chaperone.......................... 8
1.5 Protease inhibitor................. 10
Chapter 2 Aim.......................... 12
Chapter 3 Materials and methods........ 14
3.1 CRISPR genome editing.............. 15
3.2 Fibroblast cultures................ 16
3.3 Cell viability Assay............... 16
3.4 Western blotting................... 17
3.5 GLA enzyme activity................ 18
3.6 Immunofluorescence analysis........ 19
3.7 Enzyme Replacement Therapy (ERT)... 19
3.8 Genomic DNA extraction.................20
3.9 Statistical analysis............... 20
Chapter 4 Results...................... 21
4.1 The GLA deficient cell lines were established via CRISPR/Cas9 system..................... 22
4.2 HEK293T GLA-null cell lines were used as a platform for investigating exogenous rh-α-GLA cellular pharmacokinetics....................... 24
4.3 Co-administration of the pharmacological chaperone NB-DGJ with ERT improved the stability and activity of rhα-GLA in the GLA-null cell line..................... 25
4.4 Co-administration of the protease inhibitor E64 with ERT improved the stability and activity of rhα-GLA in the GLA-null cell line.............................. 28
4.5 NB-DGJ and E64 maintained intracellular amount of rhα-GLA and reduced GL-3 accumulation in Fabry patient-derived fibroblasts............................ 30
4.6 Expand the drug candidates for improving the stability and activity of rhα-GLA in the GLA-null cell line.......... 31
Chapter 5 Discussion................... 33
References............................. 39
Appendices............................. 46


List of Figures

Figure 1. gRNA design for CRISPR/Cas9 system........... 47
Figure 2. GLA activity in selected CRISPR edited HEK293T clones................................................. 48
Figure 3. The sequencing of selected CRISPR edited clones with one nucleotide insertion............................ 49
Figure 4. Cell proliferation of CRISPR edited clones were not affected after genome editing......................... 50
Figure 5. Enzyme activity and protein expression of rhα-GLA in the GLA-null cell lines................................ 51
Figure 6. Enzyme activity and protein expression of rhα-GLA in the GLA-null cell lines................................ 52
Figure 7. rh-α-GLA was decreased with time and had a half-life of 24 hr in the GLA-null cells......................... 53
Figure 8. The appropriate concentrations of chemical chaperones............................................. 54
Figure 9. Co-administration of Fabrazyme and 1-DGJ, NB-DGJ for 5 hr increased the enzyme activity and protein stability of rhα-GLA in vitro....................................... 55
Figure 10. Co-administration of Replagal and 1-DGJ, NB-DGJ for 5 hr increased the enzyme activity and protein stability of rhα-GLA in vitro....................................... 56
Figure 11. Co-administration of Fabrazyme and 1-DGJ, NB-DGJ for 24 hr increased the enzyme activity and protein stability of rhα-GLA in vitro....................................... 57
Figure 12. Co-administration of Replagal and 1-DGJ, NB-DGJ for 24 hr increased the enzyme activity and protein stability of rhα-GLA in vitro....................................... 58
Figure 13. The appropriate concentrations of protease inhibitors............................................. 59
Figure 14. Co-administration of Fabrazyme and E64 for 5 hr increased the enzyme activity and protein stability of rhα-GLA in vitro............................................... 60
Figure 15. Co-administration of Replagal and E64 for 5 hr increased the enzyme activity and protein stability of rhα-GLA in vitro............................................... 61
Figure 16. Co-administration of Fabrazyme and E64 for 24 hr increased the enzyme activity and protein stability of rhα-GLA in vitro............................................... 62
Figure 17. Co-administration of Replagal and E64 for 24 hr increased the enzyme activity and protein stability of rhα-GLA in vitro............................................... 63
Figure 18. Immunostaining of rh-α-Gal A in IVS4+919G>A Fabry patient fibroblasts after co-administration of Fabrazyme and 1-DGJ, NB-DGJ, E64....................................... 64
Figure 19. Immunostaining of rh-α-Gal A in IVS4+919G>A Fabry patient fibroblasts after co-administration of Replagal and 1-DGJ, NB-DGJ, E64....................................... 65
Figure 20. Immunostaining of GL-3 in IVS4+919G>A Fabry patient fibroblasts after co-administration of Fabrazyme and 1-DGJ, NB-DGJ, E64............................................... 66
Figure 21. Immunostaining of GL-3 in IVS4+919G>A Fabry patient fibroblasts after co-administration of Replagal and 1-DGJ, NB-DGJ, E64............................................... 67
Figure 22. The candidates that significantly increased the rh-α-GLA activity after 24 hr co-treatment with Replagal in vitro. ........................................................68

List of Tables

Table 1. List of the drugs for screening in the present study ........................................................72




Banikazemi, M., Bultas, J., Waldek, S., Wilcox, W. R., Whitley, C. B., McDonald, M., Finkel, R., Packman, S., Bichet, D. G., Warnock, D. G., Desnick, R. J., and Fabry Disease Clinical Trial Study, G. (2007). Agalsidase-beta therapy for advanced
Fabry disease: a randomized trial. Ann Intern Med 146, 77-86.
Benjamin, E. R., Khanna, R., Schilling, A., Flanagan, J. J., Pellegrino, L. J., Brignol, N., Lun, Y., Guillen, D., Ranes, B. E., Frascella, M., Soska, R., Feng, J., Dungan, L., Young, B., Lockhart, D. J., and Valenzano, K. J. (2012). Co-administration with the pharmacological chaperone AT1001 increases recombinant human alpha-galactosidase A tissue uptake and improves substrate reduction in Fabry mice. Molecular Therapy 20, 717-726.
Bernier, V., Lagace, M., Bichet, D. G., and Bouvier, M. (2004). Pharmacological chaperones: potential treatment for conformational diseases. Trends Endocrinol Metab 15, 222-228.
Cortez, L., and Sim, V. (2014). The therapeutic potential of chemical chaperones in protein folding diseases. Prion 8, 197-202.
Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., Chao, Y., Pirzada, Z. A., Eckert, M. R., Vogel, J., and Charpentier, E. (2011). CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607.
Desnick, R. J., and Brady, R. O. (2004). Fabry disease in childhood. J Pediatr 144, S20-26.
Doudna, J. A., and Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096.
Drag, M., and Salvesen, G. S. (2010). Emerging principles in protease-based drug discovery. Nat Rev Drug Discov 9, 690-701.
Eng, C. M., Banikazemi, M., Gordon, R. E., Goldman, M., Phelps, R., Kim, L., Gass, A., Winston, J., Dikman, S., Fallon, J. T., Brodie, S., Stacy, C. B., Mehta, D., Parsons, R., Norton, K., O'Callaghan, M., and Desnick, R. J. (2001a). A phase 1/2 clinical trial of enzyme replacement in fabry disease: pharmacokinetic, substrate clearance, and safety studies. Am J Hum Genet 68, 711-722.
Eng, C. M., Guffon, N., Wilcox, W. R., Germain, D. P., Lee, P., Waldek, S., Caplan, L., Linthorst, G. E., Desnick, R. J., and International Collaborative Fabry Disease Study, G. (2001b). Safety and efficacy of recombinant human alpha-galactosidase A--replacement therapy in Fabry's disease. N Engl J Med 345, 9-16.
Fan, J. Q., Ishii, S., Asano, N., and Suzuki, Y. (1999). Accelerated transport and maturation of lysosomal alpha-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat medi 5, 112-115.
Frustaci, A., Chimenti, C., Ricci, R., Natale, L., Russo, M. A., Pieroni, M., Eng, C. M., and Desnick, R. J. (2001). Improvement in cardiac function in the cardiac variant of Fabry's disease with galactose-infusion therapy. N Engl J Med 345, 25-32.
Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K., and Sander, J. D. (2013). High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31, 822-826.
Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M., and Joung, J. K. (2014). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32, 279-284.
Gaj, T., Gersbach, C. A., and Barbas, C. F., 3rd (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31, 397-405.
Gasiunas, G., Barrangou, R., Horvath, P., and Siksnys, V. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109, E2579-2586.
Hughes, D. A., Elliott, P. M., Shah, J., Zuckerman, J., Coghlan, G., Brookes, J., and Mehta, A. B. (2008). Effects of enzyme replacement therapy on the cardiomyopathy of Anderson-Fabry disease: a randomised, double-blind, placebo-controlled clinical trial of agalsidase alfa. Heart 94, 153-158.
Hwu, W. L., Chien, Y. H., Lee, N. C., Chiang, S. C., Dobrovolny, R., Huang, A. C., Yeh, H. Y., Chao, M. C., Lin, S. J., Kitagawa, T., Desnick, R. J., and Hsu, L. W. (2009). Newborn screening for Fabry disease in Taiwan reveals a high incidence of the later-onset GLA mutation c.936+919G>A (IVS4+919G>A). Hum Mutat 30, 1397-1405.
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., and Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.
Keating, G. M., and Simpson, D. (2007). Agalsidase Beta: a review of its use in the management of Fabry disease. Drugs 67, 435-455.
Leidenheimer, N. J., and Ryder, K. G. (2014). Pharmacological chaperoning: a primer on mechanism and pharmacology. Pharmacol Res 83, 10-19.
Liu, H. C., Lin, H. Y., Yang, C. F., Liao, H. C., Hsu, T. R., Lo, C. W., Chang, F. P., Huang, C. K., Lu, Y. H., Lin, S. P., Yu, W. C., and Niu, D. M. (2014). Globotriaosylsphingosine (lyso-Gb3) might not be a reliable marker for monitoring the long-term therapeutic outcomes of enzyme replacement therapy for late-onset Fabry patients with the Chinese hotspot mutation (IVS4+919G>A). Orphanet J Rare Dis 9, 111.
Muchowski, P. J., and Wacker, J. L. (2005). Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6, 11-22.
Nakao, S., Takenaka, T., Maeda, M., Kodama, C., Tanaka, A., Tahara, M., Yoshida, A., Kuriyama, M., Hayashibe, H., Sakuraba, H., and et al. (1995). An atypical variant of Fabry's disease in men with left ventricular hypertrophy. N Engl J Med 333, 288-293.
Overballe-Petersen, S., Harms, K., Orlando, L. A., Mayar, J. V., Rasmussen, S., Dahl, T. W., Rosing, M. T., Poole, A. M., Sicheritz-Ponten, T., Brunak, S., Inselmann, S., de Vries, J., Wackernagel, W., Pybus, O. G., Nielsen, R., Johnsen, P. J., Nielsen, K. M., and Willerslev, E. (2013). Bacterial natural transformation by highly fragmented and damaged DNA. Proc Natl Acad Sci U S A 110, 19860-19865.
Pan, B., Ricci, M. S., and Trout, B. L. (2011). A molecular mechanism of hydrolysis of peptide bonds at neutral pH using a model compound. J Phys Chem B 115, 5958-5970.
Porto, C., Cardone, M., Fontana, F., Rossi, B., Tuzzi, M. R., Tarallo, A., Barone, M. V., Andria, G., and Parenti, G. (2009). The pharmacological chaperone N-butyldeoxynojirimycin enhances enzyme replacement therapy in Pompe disease fibroblasts. Mol Ther 17, 964-971.
Porto, C., Pisani, A., Rosa, M., Acampora, E., Avolio, V., Tuzzi, M. R., Visciano, B., Gagliardo, C., Materazzi, S., la Marca, G., Andria, G., and Parenti, G. (2012). Synergy between the pharmacological chaperone 1-deoxygalactonojirimycin and the human recombinant alpha-galactosidase A in cultured fibroblasts from patients with Fabry disease. J Inherit Metab Dis 35, 513-520.
Rajan, R. S., Tsumoto, K., Tokunaga, M., Tokunaga, H., Kita, Y., and Arakawa, T. (2011). Chemical and pharmacological chaperones: application for recombinant protein production and protein folding diseases. Curr Med Chem 18, 1-15.
Desnick RJ, YA Ioannou, CM Eng (2001). "α-galactosidase A deficiency: Fabry disease. In: The metabolic and molecular bases of inherited disease." McGraw Hill, New York, 3733-3774.
Saeed et al., (2015). "Review of Current and Future Treatment Strategies for Fabry Disease: A model for treating yysosomal storage diseases. " J Pharmacol Clin Toxicol. 3(3), 1051
Chabbat J, Porte P, Tellier M, Steinbuch M. (1993). “Aprotinin is a competitive inhibitor of the factor VIIa-tissue factor complex.” Thromb Res. 71(3):205-15
El-Metwally, T.H., El-Senosi, Y. (2010) Enzyme Inhibition. Medical Enzymology: Simplified Approach.Chapter 6, Nova Publishers, NY. pp 57-77
Sachdev, B., Takenaka, T., Teraguchi, H., Tei, C., Lee, P., McKenna, W. J., and Elliott, P. M. (2002). Prevalence of Anderson-Fabry disease in male patients with late onset hypertrophic cardiomyopathy. Circulation 105, 1407-1411.
Saibil, H. (2013). Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol 14, 630-642.
Sander, J. D., and Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32, 347-355.
Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., and Siksnys, V. (2011). The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39, 9275-9282.
Schiffmann, R., Kopp, J. B., Austin, H. A., 3rd, Sabnis, S., Moore, D. F., Weibel, T., Balow, J. E., and Brady, R. O. (2001). Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA 285, 2743-2749.
Stenson, P. D., Ball, E. V., Mort, M., Phillips, A. D., Shiel, J. A., Thomas, N. S., Abeysinghe, S., Krawczak, M., and Cooper, D. N. (2003). Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 21, 577-581.
Suzuki, Y. (2013). Chaperone therapy update: Fabry disease, GM1-gangliosidosis and Gaucher disease. Brain Dev 35, 515-523.
Suzuki, Y., Sakuraba, H., Hayashi, K., Suzuki, K., and Imahori, K. (1981). Beta-galactosidase-neuraminidase deficiency: restoration of beta-galactosidase activity by protease inhibitors. J Biochem 90, 271-273.
Swarts, D. C., Mosterd, C., van Passel, M. W., and Brouns, S. J. (2012). CRISPR interference directs strand specific spacer acquisition. PLoS One 7, e35888.
Turk, B. (2006). Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5, 785-799.
Valenzano, K. J., Khanna, R., Powe, A. C., Boyd, R., Lee, G., Flanagan, J. J., and Benjamin, E. R. (2011). Identification and characterization of pharmacological chaperones to correct enzyme deficiencies in lysosomal storage disorders. Assay Drug Dev Technol 9, 213-235.
Voigt, J., and Woestemeyer, J. (2015). Protease Inhibitors Cause Necrotic Cell Death in Chlamydomonas reinhardtii by Inducing the Generation of Reactive Oxygen Species. J Eukaryot Microbiol 62, 711-721.
von Scheidt, W., Eng, C. M., Fitzmaurice, T. F., Erdmann, E., Hubner, G., Olsen, E. G., Christomanou, H., Kandolf, R., Bishop, D. F., and Desnick, R. J. (1991). An atypical variant of Fabry's disease with manifestations confined to the myocardium. N Engl J Med 324, 395-399.
West, M., Nicholls, K., Mehta, A., Clarke, J. T., Steiner, R., Beck, M., Barshop, B. A., Rhead, W., Mensah, R., Ries, M., and Schiffmann, R. (2009). Agalsidase alfa and kidney dysfunction in Fabry disease. J Am Soc Nephrol 20, 1132-1139.
Wu, X., Katz, E., Della Valle, M. C., Mascioli, K., Flanagan, J. J., Castelli, J. P., Schiffmann, R., Boudes, P., Lockhart, D. J., Valenzano, K. J., and Benjamin, E. R. (2011). A pharmacogenetic approach to identify mutant forms of alpha-galactosidase A that respond to a pharmacological chaperone for Fabry disease. Hum Mutat 32, 965-977.
Xu, S., Lun, Y., Brignol, N., Hamler, R., Schilling, A., Frascella, M., Sullivan, S., Boyd, R. E., Chang, K., Soska, R., Garcia, A., Feng, J., Yasukawa, H., Shardlow, C., Churchill, A., Ketkar, A., Robertson, N., Miyamoto, M., Mihara, K., Benjamin, E. R., Lockhart, D. J., Hirato, T., Fowles, S., Valenzano, K. J., and Khanna, R. (2015). Coformulation of a novel human alpha-Galactosidase A with the pharmacological chaperone AT1001 leads to improved substrate reduction in Fabry mice. Molecular therapy 23, 1169-1181.
Zarate, Y. A., and Hopkin, R. J. (2008). Fabry's disease. Lancet 372, 1427-1435.
Zhang, F., Wen, Y., and Guo, X. (2014). CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet 23, R40-46.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top