|
Banikazemi, M., Bultas, J., Waldek, S., Wilcox, W. R., Whitley, C. B., McDonald, M., Finkel, R., Packman, S., Bichet, D. G., Warnock, D. G., Desnick, R. J., and Fabry Disease Clinical Trial Study, G. (2007). Agalsidase-beta therapy for advanced Fabry disease: a randomized trial. Ann Intern Med 146, 77-86. Benjamin, E. R., Khanna, R., Schilling, A., Flanagan, J. J., Pellegrino, L. J., Brignol, N., Lun, Y., Guillen, D., Ranes, B. E., Frascella, M., Soska, R., Feng, J., Dungan, L., Young, B., Lockhart, D. J., and Valenzano, K. J. (2012). Co-administration with the pharmacological chaperone AT1001 increases recombinant human alpha-galactosidase A tissue uptake and improves substrate reduction in Fabry mice. Molecular Therapy 20, 717-726. Bernier, V., Lagace, M., Bichet, D. G., and Bouvier, M. (2004). Pharmacological chaperones: potential treatment for conformational diseases. Trends Endocrinol Metab 15, 222-228. Cortez, L., and Sim, V. (2014). The therapeutic potential of chemical chaperones in protein folding diseases. Prion 8, 197-202. Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., Chao, Y., Pirzada, Z. A., Eckert, M. R., Vogel, J., and Charpentier, E. (2011). CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607. Desnick, R. J., and Brady, R. O. (2004). Fabry disease in childhood. J Pediatr 144, S20-26. Doudna, J. A., and Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096. Drag, M., and Salvesen, G. S. (2010). Emerging principles in protease-based drug discovery. Nat Rev Drug Discov 9, 690-701. Eng, C. M., Banikazemi, M., Gordon, R. E., Goldman, M., Phelps, R., Kim, L., Gass, A., Winston, J., Dikman, S., Fallon, J. T., Brodie, S., Stacy, C. B., Mehta, D., Parsons, R., Norton, K., O'Callaghan, M., and Desnick, R. J. (2001a). A phase 1/2 clinical trial of enzyme replacement in fabry disease: pharmacokinetic, substrate clearance, and safety studies. Am J Hum Genet 68, 711-722. Eng, C. M., Guffon, N., Wilcox, W. R., Germain, D. P., Lee, P., Waldek, S., Caplan, L., Linthorst, G. E., Desnick, R. J., and International Collaborative Fabry Disease Study, G. (2001b). Safety and efficacy of recombinant human alpha-galactosidase A--replacement therapy in Fabry's disease. N Engl J Med 345, 9-16. Fan, J. Q., Ishii, S., Asano, N., and Suzuki, Y. (1999). Accelerated transport and maturation of lysosomal alpha-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat medi 5, 112-115. Frustaci, A., Chimenti, C., Ricci, R., Natale, L., Russo, M. A., Pieroni, M., Eng, C. M., and Desnick, R. J. (2001). Improvement in cardiac function in the cardiac variant of Fabry's disease with galactose-infusion therapy. N Engl J Med 345, 25-32. Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K., and Sander, J. D. (2013). High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31, 822-826. Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M., and Joung, J. K. (2014). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32, 279-284. Gaj, T., Gersbach, C. A., and Barbas, C. F., 3rd (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31, 397-405. Gasiunas, G., Barrangou, R., Horvath, P., and Siksnys, V. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109, E2579-2586. Hughes, D. A., Elliott, P. M., Shah, J., Zuckerman, J., Coghlan, G., Brookes, J., and Mehta, A. B. (2008). Effects of enzyme replacement therapy on the cardiomyopathy of Anderson-Fabry disease: a randomised, double-blind, placebo-controlled clinical trial of agalsidase alfa. Heart 94, 153-158. Hwu, W. L., Chien, Y. H., Lee, N. C., Chiang, S. C., Dobrovolny, R., Huang, A. C., Yeh, H. Y., Chao, M. C., Lin, S. J., Kitagawa, T., Desnick, R. J., and Hsu, L. W. (2009). Newborn screening for Fabry disease in Taiwan reveals a high incidence of the later-onset GLA mutation c.936+919G>A (IVS4+919G>A). Hum Mutat 30, 1397-1405. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., and Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821. Keating, G. M., and Simpson, D. (2007). Agalsidase Beta: a review of its use in the management of Fabry disease. Drugs 67, 435-455. Leidenheimer, N. J., and Ryder, K. G. (2014). Pharmacological chaperoning: a primer on mechanism and pharmacology. Pharmacol Res 83, 10-19. Liu, H. C., Lin, H. Y., Yang, C. F., Liao, H. C., Hsu, T. R., Lo, C. W., Chang, F. P., Huang, C. K., Lu, Y. H., Lin, S. P., Yu, W. C., and Niu, D. M. (2014). Globotriaosylsphingosine (lyso-Gb3) might not be a reliable marker for monitoring the long-term therapeutic outcomes of enzyme replacement therapy for late-onset Fabry patients with the Chinese hotspot mutation (IVS4+919G>A). Orphanet J Rare Dis 9, 111. Muchowski, P. J., and Wacker, J. L. (2005). Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6, 11-22. Nakao, S., Takenaka, T., Maeda, M., Kodama, C., Tanaka, A., Tahara, M., Yoshida, A., Kuriyama, M., Hayashibe, H., Sakuraba, H., and et al. (1995). An atypical variant of Fabry's disease in men with left ventricular hypertrophy. N Engl J Med 333, 288-293. Overballe-Petersen, S., Harms, K., Orlando, L. A., Mayar, J. V., Rasmussen, S., Dahl, T. W., Rosing, M. T., Poole, A. M., Sicheritz-Ponten, T., Brunak, S., Inselmann, S., de Vries, J., Wackernagel, W., Pybus, O. G., Nielsen, R., Johnsen, P. J., Nielsen, K. M., and Willerslev, E. (2013). Bacterial natural transformation by highly fragmented and damaged DNA. Proc Natl Acad Sci U S A 110, 19860-19865. Pan, B., Ricci, M. S., and Trout, B. L. (2011). A molecular mechanism of hydrolysis of peptide bonds at neutral pH using a model compound. J Phys Chem B 115, 5958-5970. Porto, C., Cardone, M., Fontana, F., Rossi, B., Tuzzi, M. R., Tarallo, A., Barone, M. V., Andria, G., and Parenti, G. (2009). The pharmacological chaperone N-butyldeoxynojirimycin enhances enzyme replacement therapy in Pompe disease fibroblasts. Mol Ther 17, 964-971. Porto, C., Pisani, A., Rosa, M., Acampora, E., Avolio, V., Tuzzi, M. R., Visciano, B., Gagliardo, C., Materazzi, S., la Marca, G., Andria, G., and Parenti, G. (2012). Synergy between the pharmacological chaperone 1-deoxygalactonojirimycin and the human recombinant alpha-galactosidase A in cultured fibroblasts from patients with Fabry disease. J Inherit Metab Dis 35, 513-520. Rajan, R. S., Tsumoto, K., Tokunaga, M., Tokunaga, H., Kita, Y., and Arakawa, T. (2011). Chemical and pharmacological chaperones: application for recombinant protein production and protein folding diseases. Curr Med Chem 18, 1-15. Desnick RJ, YA Ioannou, CM Eng (2001). "α-galactosidase A deficiency: Fabry disease. In: The metabolic and molecular bases of inherited disease." McGraw Hill, New York, 3733-3774. Saeed et al., (2015). "Review of Current and Future Treatment Strategies for Fabry Disease: A model for treating yysosomal storage diseases. " J Pharmacol Clin Toxicol. 3(3), 1051 Chabbat J, Porte P, Tellier M, Steinbuch M. (1993). “Aprotinin is a competitive inhibitor of the factor VIIa-tissue factor complex.” Thromb Res. 71(3):205-15 El-Metwally, T.H., El-Senosi, Y. (2010) Enzyme Inhibition. Medical Enzymology: Simplified Approach.Chapter 6, Nova Publishers, NY. pp 57-77 Sachdev, B., Takenaka, T., Teraguchi, H., Tei, C., Lee, P., McKenna, W. J., and Elliott, P. M. (2002). Prevalence of Anderson-Fabry disease in male patients with late onset hypertrophic cardiomyopathy. Circulation 105, 1407-1411. Saibil, H. (2013). Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol 14, 630-642. Sander, J. D., and Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32, 347-355. Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., and Siksnys, V. (2011). The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39, 9275-9282. Schiffmann, R., Kopp, J. B., Austin, H. A., 3rd, Sabnis, S., Moore, D. F., Weibel, T., Balow, J. E., and Brady, R. O. (2001). Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA 285, 2743-2749. Stenson, P. D., Ball, E. V., Mort, M., Phillips, A. D., Shiel, J. A., Thomas, N. S., Abeysinghe, S., Krawczak, M., and Cooper, D. N. (2003). Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 21, 577-581. Suzuki, Y. (2013). Chaperone therapy update: Fabry disease, GM1-gangliosidosis and Gaucher disease. Brain Dev 35, 515-523. Suzuki, Y., Sakuraba, H., Hayashi, K., Suzuki, K., and Imahori, K. (1981). Beta-galactosidase-neuraminidase deficiency: restoration of beta-galactosidase activity by protease inhibitors. J Biochem 90, 271-273. Swarts, D. C., Mosterd, C., van Passel, M. W., and Brouns, S. J. (2012). CRISPR interference directs strand specific spacer acquisition. PLoS One 7, e35888. Turk, B. (2006). Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5, 785-799. Valenzano, K. J., Khanna, R., Powe, A. C., Boyd, R., Lee, G., Flanagan, J. J., and Benjamin, E. R. (2011). Identification and characterization of pharmacological chaperones to correct enzyme deficiencies in lysosomal storage disorders. Assay Drug Dev Technol 9, 213-235. Voigt, J., and Woestemeyer, J. (2015). Protease Inhibitors Cause Necrotic Cell Death in Chlamydomonas reinhardtii by Inducing the Generation of Reactive Oxygen Species. J Eukaryot Microbiol 62, 711-721. von Scheidt, W., Eng, C. M., Fitzmaurice, T. F., Erdmann, E., Hubner, G., Olsen, E. G., Christomanou, H., Kandolf, R., Bishop, D. F., and Desnick, R. J. (1991). An atypical variant of Fabry's disease with manifestations confined to the myocardium. N Engl J Med 324, 395-399. West, M., Nicholls, K., Mehta, A., Clarke, J. T., Steiner, R., Beck, M., Barshop, B. A., Rhead, W., Mensah, R., Ries, M., and Schiffmann, R. (2009). Agalsidase alfa and kidney dysfunction in Fabry disease. J Am Soc Nephrol 20, 1132-1139. Wu, X., Katz, E., Della Valle, M. C., Mascioli, K., Flanagan, J. J., Castelli, J. P., Schiffmann, R., Boudes, P., Lockhart, D. J., Valenzano, K. J., and Benjamin, E. R. (2011). A pharmacogenetic approach to identify mutant forms of alpha-galactosidase A that respond to a pharmacological chaperone for Fabry disease. Hum Mutat 32, 965-977. Xu, S., Lun, Y., Brignol, N., Hamler, R., Schilling, A., Frascella, M., Sullivan, S., Boyd, R. E., Chang, K., Soska, R., Garcia, A., Feng, J., Yasukawa, H., Shardlow, C., Churchill, A., Ketkar, A., Robertson, N., Miyamoto, M., Mihara, K., Benjamin, E. R., Lockhart, D. J., Hirato, T., Fowles, S., Valenzano, K. J., and Khanna, R. (2015). Coformulation of a novel human alpha-Galactosidase A with the pharmacological chaperone AT1001 leads to improved substrate reduction in Fabry mice. Molecular therapy 23, 1169-1181. Zarate, Y. A., and Hopkin, R. J. (2008). Fabry's disease. Lancet 372, 1427-1435. Zhang, F., Wen, Y., and Guo, X. (2014). CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet 23, R40-46.
|