跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/18 09:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林玟佐
研究生(外文):Lin Wen-Tsuo
論文名稱:ProteinkinaseC和Srcfamilytyrosinekinase在內毒素敗血性休克鼠胸主動脈RhoA活性中所扮演的角色
論文名稱(外文):Roles of protein kinase C and Src family tyrosine kinase in RhoA activity in thoracic aortae from endotoxemic rats
指導教授:吳錦楨
指導教授(外文):Wu Chin-Chen
學位類別:碩士
校院名稱:國防醫學院
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:72
中文關鍵詞:敗血症RhoA蛋白質激酶 Csrc 家族酪胺酸激酶
外文關鍵詞:sepsisRhoAprotein kinase Csrc family tyrosine kinase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
敗血症的定義為感染所引發之全身性發炎反應,晚期很容易產生敗血性休克,病人會出現嚴重低血壓及對升壓劑產生血管低反應性的情形。由於血壓無法回復,導致身體組織與器官持續處於低灌流狀態,最後則會導致多重器官功能異常而死亡。因此,研究並了解敗血性休克時血管低反應性的機轉是目前非常重要的課題。
近年來許多學者針對鈣離子致敏化機轉來研究血管平滑肌的收縮,其中,此機轉中的小 G 蛋白 RhoA 對於血管收縮的調控扮演著重要角色。RhoA 和其下游 Rho-kinase 的活化會使肌凝蛋白輕鏈去磷酸酶失去活性,造成血管的收縮。 RhoA 的活性會受到 GEF (guanine nucleotide exchange factor)、 GAP (GTPase activating protein) 和 GDI (GDP dissociation inhibitor) 三種蛋白質調控,因此可藉由影響這三種蛋白質去調控 RhoA 的活性。研究指出, Src 家族酪胺酸蛋白激酶 (Src family tyrosine kinase, SFK) 具有活化 GEF 的作用,因此對 RhoA 的活化也扮演著重要角色。另外,也有研究指出在鈣離子非依賴性血管收縮方面,蛋白質激酶 C (protein kinase C, PKC) 產生的血管收縮是經由活化 RhoA 所造成的。本實驗的目的主要探討,在敗血性休克老鼠的胸主動脈中,RhoA 活性的變化,而 PKC 和 SFK 對於 RhoA 活性的調控扮演的角色。
本實驗以靜脈注射內毒素的方式誘發老鼠產生敗血性休克,再將老鼠犧牲並取出其胸主動脈,觀察血管 RhoA表現與活性的變化,並評估 PKC 和 SFK 對 RhoA 活性的調控。結果發現在內毒素血症老鼠主動脈中,RhoA 的活性顯著下降。給予 PKC 和 SFK 抑制劑 (分別為 GF-109203X 和 PP2) 後,對敗血性休克老鼠血管的 RhoA 活性產生抑制作用。 GF-109203X 在敗血性休克的情況下,對 SFK 的活性產生明顯的抑制作用。換言之,在敗血性休克下, PKC 和 SFK 對 RhoA 活性有明顯的調控作用; PKC 對於 SFK 亦有明顯的活化作用。
綜合實驗結果顯示, lipopolysaccharide (LPS) 誘發老鼠內毒素敗血性休克其胸主動脈產生血管低反應可能與 RhoA 活性降低密切相關,且 PKC 和 SFK 對 RhoA 活性之調控扮演重要角色。另外, PKC 亦可透過 SFK 去調控 RhoA 活性。
Sepsis is the systemic inflammatory response with infection. Usually, septic shock is occurred at the late phase of sepsis. Septic shock is characterized by severe hypotension and reduced response to vasopressor agents, called vascular hyporeactivity. The hypotension and vascular hyporeactvity are associated with the development of multiple organs dysfunction which causes death eventually. Thus, it is important to investigate the mechanism of vascular hyporeactivity in septic shock.
Among the cell signaling pathways that are crucial to control vascular tone, Ca2+-sensitization contraction has become more and more important. The small GTP-binding protein, RhoA, plays a crucial role in mediating smooth muscle contraction. Activation of RhoA leads to inactivation of myosin light chain phosphatase via activation of Rho-kinase. The activation of RhoA is controlled by three mediators, GEF (guanine nucleotide exchange factor), GAP (GTPase activating protein) and GDI (GDP dissociation inhibitor). Among these mediators, GEF has been regarded as the most important one for RhoA activation. It has been shown that Src family tyrosine kinase (SFK) can activate RhoA via phosphorylation of GEF. In addition, it is reported that activation of PKC can lead to Ca2+-independent vasocontraction through activation of RhoA. The purpose of this study was to investigate the role of PKC and SFK in RhoA activity in thoracic aortae from endotoxemic rats.
Rats received an intravenous injection of lipopolysaccharide (LPS, 10 mg/kg) for 4 hours. After then, rats were sacrificed and the thoracic aortae were excised and immediately incubated in GF-109203X (PKC inhibitor) and PP2 (SFK inhibitor). We found that RhoA activity was decreased significantly in aortae from endotoxic rats. GF-109203X and PP2 had inhibitory effect in aortae from endotoxic rats only. In addition, the phosphorylation of SFK was decreased by GF-109203X in endotoxemic rats.
In conclusion, PKC and SFK might play a more crucial role in RhoA activation and PKC might play a more important role in activation of SFK endotoxemic rats. These results suggest that RhoA is related to vascular hyporeactivity caused by LPS-induced septic shock. In addition, PKC and SFK might be targets for improving vascular hyporeactivity.
目錄 I
圖目錄 II
英文縮寫對照一覽表 IV
中文摘要 V
ABSTRACT VII
第一章 緒論 1
第二章 材料與方法 14
第三章 實驗結果 27
第四章 討論 33
第五章 結論 45
參考文獻 63
1. Andrea, JE & Walsh, MP. (1992). Protein kinase C of smooth muscle. Hypertension, 20, 585-595.
2. Baek, I, Jeon, SB, Kim, J, Seok, YM, Song, MJ, Chae, SC, Jun, JE, Park, WH & Kim, IK. (2009). A role for Rho-kinase in Ca-independent contractions induced by phorbol-12,13-dibutyrate. Clin Exp Pharmacol Physiol, 36, 256-261.
3. Bermejo, A, Zarzuelo, A & Duarte, J. (2003). In vivo vascular effects of genistein on a rat model of septic shock induced by lipopolysaccharide. J Cardiovasc Pharmacol, 42, 329-338.
4. Bone, RC, Balk, RA, Cerra, FB, Dellinger, RP, Fein, AM, Knaus, WA, Schein, RM & Sibbald, WJ. (1992). Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest, 101, 1644-1655.
5. Bone, RC, Grodzin, CJ & Balk, RA. (1997). Sepsis: a new hypothesis for pathogenesis of the disease process. Chest, 112, 235-243.
6. Brandt, DT, Goerke, A, Heuer, M, Gimona, M, Leitges, M, Kremmer, E, Lammers, R, Haller, H & Mischak, H. (2003). Protein kinase C delta induces Src kinase activity via activation of the protein tyrosine phosphatase PTP alpha. J Biol Chem, 278, 34073-34078.
7. Brown, MT & Cooper, JA. (1996). Regulation, substrates and functions of src. Biochim Biophys Acta, 1287, 121-149.
8. Buras, JA, Holzmann, B & Sitkovsky, M. (2005). Animal models of sepsis: setting the stage. Nat Rev Drug Discov, 4, 854-865.
9. Callahan, LA, Nethery, D, Stofan, D, DiMarco, A & Supinski, G. (2001). Free radical-induced contractile protein dysfunction in endotoxin-induced sepsis. Am J Respir Cell Mol Biol, 24, 210-217.
10. Chapman S Jr & Iredell, JR. (2008). Gram-negative sepsis in the intensive care unit: avoiding therapeutic failure. Curr Opin Infect Dis, 21, 604-609.
11. Chen, SJ, Wu, CC & Yen, MH. (1999). Role of nitric oxide and K+-channels in vascular hyporeactivity induced by endotoxin. Naunyn Schmiedebergs Arch Pharmacol, 359, 493-499.
12. Chitaley, K & Webb, RC. (2002). Nitric oxide induces dilation of rat aorta via inhibition of rho-kinase signaling. Hypertension, 39, 438-442.
13. da Silva-Santos, JE, Chiao, CW, Leite, R & Webb, RC. (2009). The Rho-A/Rho-kinase pathway is up-regulated but remains inhibited by cyclic guanosine monophosphate-dependent mechanisms during endotoxemia in small mesenteric arteries. Crit Care Med, 37, 1716-1723.
14. Dorinsky, PM & Gadek, JE. (1989). Mechanisms of multiple nonpulmonary organ failure in ARDS. Chest, 96, 885-892.
15. Fan, H, Teti, G, Ashton, S, Guyton, K, Tempel, GE, Halushka, PV & Cook, JA. (2003). Involvement of G(i) proteins and Src tyrosine kinase in TNFalpha production induced by lipopolysaccharide, group B Streptococci and Staphylococcus aureus. Cytokine, 22, 126-133.
16. Fish, DN. (2002). Optimal antimicrobial therapy for sepsis. Am J Health Syst Pharm, 59 Suppl 1, S13-S19.
17. Gorovoy, M, Neamu, R, Niu, J, Vogel, S, Predescu, D, Miyoshi, J, Takai, Y, Kini, V, Mehta, D, Malik, AB & Voyno-Yasenetskaya, T. (2007). RhoGDI-1 modulation of the activity of monomeric RhoGTPase RhoA regulates endothelial barrier function in mouse lungs. Circ Res, 101, 50-58.
18. Groeneveld, PH, Kwappenberg, KM, Langermans, JA, Nibbering, PH & Curtis, L. (1996). Nitric oxide (NO) production correlates with renal insufficiency and multiple organ dysfunction syndrome in severe sepsis. Intensive Care Med, 22, 1197-1202.
19. Gupte, SA, Kaminski, PM, George, S, Kouznestova, L, Olson, SC, Mathew, R, Hintze, TH & Wolin, MS. (2009). Peroxide generation by p47phox-Src activation of Nox2 has a key role in protein kinase C-induced arterial smooth muscle contraction. Am J Physiol Heart Circ Physiol, 296, H1048-H1057.
20. Hilgers, RH & Webb, RC. (2005). Molecular aspects of arterial smooth muscle contraction: focus on Rho. Exp Biol Med (Maywood ), 230, 829-835.
21. Hollenberg, SM. (2009). Inotrope and vasopressor therapy of septic shock. Crit Care Clin, 25, 781-802, ix.
22. Hori, M, Sato, K, Sakata, K, Ozaki, H, Takano-Ohmuro, H, Tsuchiya, T, Sugi, H, Kato, I & Karaki, H. (1992). Receptor agonists induce myosin phosphorylation-dependent and phosphorylation-independent contractions in vascular smooth muscle. J Pharmacol Exp Ther, 261, 506-512.
23. Hughes, AD & Wijetunge, S. (1998). Role of tyrosine phosphorylation in excitation-contraction coupling in vascular smooth muscle. Acta Physiol Scand, 164, 457-469.
24. Ito, M, Nakano, T, Erdodi, F & Hartshorne, DJ. (2004). Myosin phosphatase: structure, regulation and function. Mol Cell Biochem, 259, 197-209.
25. Julou-Schaeffer, G, Gray, GA, Fleming, I, Schott, C, Parratt, JR & Stoclet, JC. (1990). Loss of vascular responsiveness induced by endotoxin involves L-arginine pathway. Am J Physiol, 259, H1038-H1043.
26. Kanashiro, CA & Khalil, RA. (1998). Signal transduction by protein kinase C in mammalian cells. Clin Exp Pharmacol Physiol, 25, 974-985.
27. Kang, CI, Kim, SH, Park, WB, Lee, KD, Kim, HB, Kim, EC, Oh, MD & Choe, KW. (2005). Bloodstream infections caused by antibiotic-resistant gram-negative bacilli: risk factors for mortality and impact of inappropriate initial antimicrobial therapy on outcome. Antimicrob Agents Chemother, 49, 760-766.
28. Kefalas, P, Brown, TR & Brickell, PM. (1995). Signalling by the p60c-src family of protein-tyrosine kinases. Int J Biochem Cell Biol, 27, 551-563.
29. Kimura, K, Ito, M, Amano, M, Chihara, K, Fukata, Y, Nakafuku, M, Yamamori, B, Feng, J, Nakano, T, Okawa, K, Iwamatsu, A & Kaibuchi, K. (1996). Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science, 273, 245-248.
30. Kitazawa, T, Eto, M, Woodsome, TP & Brautigan, DL. (2000). Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility. J Biol Chem, 275, 9897-9900.
31. Kox, M, Wijetunge, S, Pickkers, P & Hughes, AD. (2007). Inhibition of Src family tyrosine kinases prevents lipopolysaccharide-induced hyporeactivity in isolated rat tail arteries. Vascul Pharmacol, 46, 195-200.
32. Manning, G, Whyte, DB, Martinez, R, Hunter, T & Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science, 298, 1912-1934.
33. Manukyan, M, Nalbant, P, Luxen, S, Hahn, KM & Knaus, UG. (2009). RhoA GTPase activation by TLR2 and TLR3 ligands: connecting via Src to NF-kappa B. J Immunol, 182, 3522-3529.
34. Martin, GS, Mannino, DM, Eaton, S & Moss, M. (2003). The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med, 348, 1546-1554.
35. Masumoto, A, Mohri, M, Shimokawa, H, Urakami, L, Usui, M & Takeshita, A. (2002). Suppression of coronary artery spasm by the Rho-kinase inhibitor fasudil in patients with vasospastic angina. Circulation, 105, 1545-1547.
36. McKenna, TM. (1990). Prolonged exposure of rat aorta to low levels of endotoxin in vitro results in impaired contractility. Association with vascular cytokine release. J Clin Invest, 86, 160-168.
37. McKenna, TM, Clegg, JM & Williams, TJ. (1994). Protein kinase C is a mediator of lipopolysaccharide-induced vascular suppression in the rat aorta. Shock, 2, 84-89.
38. Michel, F, Grimaud, L, Tuosto, L & Acuto, O. (1998). Fyn and ZAP-70 are required for Vav phosphorylation in T cells stimulated by antigen-presenting cells. J Biol Chem, 273, 31932-31938.
39. Mills, TM, Chitaley, K, Lewis, RW & Webb, RC. (2002). Nitric oxide inhibits RhoA/Rho-kinase signaling to cause penile erection. Eur J Pharmacol, 439, 173-174.
40. Misra, HP & Fridovich, I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem, 247, 3170-3175.
41. Moncada, S, Palmer, RM & Higgs, EA. (1991). Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev, 43, 109-142.
42. Napolitani, G, Bortoletto, N, Racioppi, L, Lanzavecchia, A & D'Oro, U. (2003). Activation of src-family tyrosine kinases by LPS regulates cytokine production in dendritic cells by controlling AP-1 formation. Eur J Immunol, 33, 2832-2841.
43. Newton, AC. (1995). Protein kinase C: structure, function, and regulation. J Biol Chem, 270, 28495-28498.
44. Olofsson, B. (1999). Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal, 11, 545-554.
45. Osawa, Y, Lee, HT, Hirshman, CA, Xu, D & Emala, CW. (2006). Lipopolysaccharide-induced sensitization of adenylyl cyclase activity in murine macrophages. Am J Physiol Cell Physiol, 290, C143-C151.
46. Peng, F, Wu, D, Ingram, AJ, Zhang, B, Gao, B & Krepinsky, JC. (2007). RhoA activation in mesangial cells by mechanical strain depends on caveolae and caveolin-1 interaction. J Am Soc Nephrol, 18, 189-198.
47. Peng, F, Zhang, B, Ingram, AJ, Gao, B, Zhang, Y & Krepinsky, JC. (2010). Mechanical stretch-induced RhoA activation is mediated by the RhoGEF Vav2 in mesangial cells. Cell Signal, 22, 34-40.
48. Rees, DD, Cellek, S, Palmer, RM & Moncada, S. (1990). Dexamethasone prevents the induction by endotoxin of a nitric oxide synthase and the associated effects on vascular tone: an insight into endotoxin shock. Biochem Biophys Res Commun, 173, 541-547.
49. Ridley, AJ. (1997). The GTP-binding protein Rho. Int J Biochem Cell Biol, 29, 1225-1229.
50. Roskoski, R, Jr. (2005). Src kinase regulation by phosphorylation and dephosphorylation. Biochem Biophys Res Commun, 331, 1-14.
51. Salvemini, D. (1997). Regulation of cyclooxygenase enzymes by nitric oxide. Cell Mol Life Sci, 53, 576-582.
52. Sauzeau, V, Le, JH, Cario-Toumaniantz, C, Smolenski, A, Lohmann, SM, Bertoglio, J, Chardin, P, Pacaud, P & Loirand, G. (2000). Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle. J Biol Chem, 275, 21722-21729.
53. Sawada, N, Itoh, H, Yamashita, J, Doi, K, Inoue, M, Masatsugu, K, Fukunaga, Y, Sakaguchi, S, Sone, M, Yamahara, K, Yurugi, T & Nakao, K. (2001). cGMP-dependent protein kinase phosphorylates and inactivates RhoA. Biochem Biophys Res Commun, 280, 798-805.
54. Schuebel, KE, Movilla, N, Rosa, JL & Bustelo, XR. (1998). Phosphorylation-dependent and constitutive activation of Rho proteins by wild-type and oncogenic Vav-2. EMBO J, 17, 6608-6621.
55. Shanmugam, M, Krett, NL, Peters, CA, Maizels, ET, Murad, FM, Kawakatsu, H, Rosen, ST & Hunzicker-Dunn, M. (1998). Association of PKC delta and active Src in PMA-treated MCF-7 human breast cancer cells. Oncogene, 16, 1649-1654.
56. Silver, RM, Edwin, SS, Trautman, MS, Simmons, DL, Branch, DW, Dudley, DJ & Mitchell, MD. (1995). Bacterial lipopolysaccharide-mediated fetal death. Production of a newly recognized form of inducible cyclooxygenase (COX-2) in murine decidua in response to lipopolysaccharide. J Clin Invest, 95, 725-731.
57. Somlyo, AP & Somlyo, AV. (1994). Signal transduction and regulation in smooth muscle. Nature, 372, 231-236.
58. Somlyo, AP & Somlyo, AV. (2000). Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol, 522 Pt 2, 177-185.
59. Somlyo, AP & Somlyo, AV. (2003). Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev, 83, 1325-1358.
60. Suffredini, AF, Fromm, RE, Parker, MM, Brenner, M, Kovacs, JA, Wesley, RA & Parrillo, JE. (1989). The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med, 321, 280-287.
61. Supinski, G, Nethery, D & DiMarco, A. (1993). Effect of free radical scavengers on endotoxin-induced respiratory muscle dysfunction. Am Rev Respir Dis, 148, 1318-1324.
62. Szabo, C, Southan, GJ & Thiemermann, C. (1994). Beneficial effects and improved survival in rodent models of septic shock with S-methylisothiourea sulfate, a potent and selective inhibitor of inducible nitric oxide synthase. Proc Natl Acad Sci U S A, 91, 12472-12476.
63. Tachibana, E, Harada, T, Shibuya, M, Saito, K, Takayasu, M, Suzuki, Y & Yoshida, J. (1999). Intra-arterial infusion of fasudil hydrochloride for treating vasospasm following subarachnoid haemorrhage. Acta Neurochir (Wien ), 141, 13-19.
64. Takakura, K, Taniguchi, T, Muramatsu, I, Takeuchi, K & Fukuda, S. (2002). Modification of alpha1 -adrenoceptors by peroxynitrite as a possible mechanism of systemic hypotension in sepsis. Crit Care Med, 30, 894-899.
65. Tanabe, A, Kamisuki, Y, Hidaka, H, Suzuki, M, Negishi, M & Takuwa, Y. (2006). PKC phosphorylates MARCKS Ser159 not only directly but also through RhoA/ROCK. Biochem Biophys Res Commun, 345, 156-161.
66. Toullec, D, Pianetti, P, Coste, H, Bellevergue, P, Grand-Perret, T, Ajakane, M, Baudet, V, Boissin, P, Boursier, E, Loriolle, F & . (1991). The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem, 266, 15771-15781.
67. Uehata, M, Ishizaki, T, Satoh, H, Ono, T, Kawahara, T, Morishita, T, Tamakawa, H, Yamagami, K, Inui, J, Maekawa, M & Narumiya, S. (1997). Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature, 389, 990-994.
68. Vincent, JL. (2001). Hemodynamic support in septic shock. Intensive Care Med, 27 Suppl 1, S80-S92.
69. Webb, RC. (2003). Smooth muscle contraction and relaxation. Adv Physiol Educ, 27, 201-206.
70. Wettschureck, N & Offermanns, S. (2002). Rho/Rho-kinase mediated signaling in physiology and pathophysiology. J Mol Med, 80, 629-638.
71. Wijetunge, S & Hughes, AD. (1995). pp60c-src increases voltage-operated calcium channel currents in vascular smooth muscle cells. Biochem Biophys Res Commun, 217, 1039-1044.
72. Wijetunge, S & Hughes, AD. (2007). Src family tyrosine kinases mediate contraction of rat isolated tail arteries in response to a hyposmotic stimulus. J Hypertens, 25, 1871-1878.
73. Wijetunge, S, Lymn, JS & Hughes, AD. (2000). Effects of protein tyrosine kinase inhibitors on voltage-operated calcium channel currents in vascular smooth muscle cells and pp60(c-src) kinase activity. Br J Pharmacol, 129, 1347-1354.
74. Wu, CC. (2006). Possible therapies of septic shock: based on animal studies and clinical trials. Curr Pharm Des, 12, 3535-3541.
75. Wu, CC, Thiemermann, C & Vane, JR. (1995). Glibenclamide-induced inhibition of the expression of inducible nitric oxide synthase in cultured macrophages and in the anaesthetized rat. Br J Pharmacol, 114, 1273-1281.
76. Wu, X, Haystead, TA, Nakamoto, RK, Somlyo, AV & Somlyo, AP. (1998). Acceleration of myosin light chain dephosphorylation and relaxation of smooth muscle by telokin. Synergism with cyclic nucleotide-activated kinase. J Biol Chem, 273, 11362-11369.
77. Xian, W, Rosenberg, MP & DiGiovanni, J. (1997). Activation of erbB2 and c-src in phorbol ester-treated mouse epidermis: possible role in mouse skin tumor promotion. Oncogene, 14, 1435-1444.
78. Xie, L, Clunn, GF, Lymn, JS & Hughes, AD. (1998). Role of intracellular calcium ([Ca2+]i) and tyrosine phosphorylation in adhesion of cultured vascular smooth muscle cells to fibrinogen. Cardiovasc Res, 39, 475-484.
79. Xiong, Z, Burnette, E & Cheung, DW. (1995). Modulation of Ca(2+)-activated K+ channel activity by tyrosine kinase inhibitors in vascular smooth muscle cell. Eur J Pharmacol, 290, 117-123.
80. Yang, SL, Hsu, C, Lue, SI, Hsu, HK & Liu, MS. (1997). Protein kinase a activity is increased in rat heart during late hypodynamic phase of sepsis. Shock, 8, 68-72.
81. Yu, L, Gengaro, PE, Niederberger, M, Burke, TJ & Schrier, RW. (1994). Nitric oxide: a mediator in rat tubular hypoxia/reoxygenation injury. Proc Natl Acad Sci U S A, 91, 1691-1695.
82. Zanotti-Cavazzoni, SL & Goldfarb, RD. (2009). Animal models of sepsis. Crit Care Clin, 25, 703-viii.
83. Zhu, X, Kim, JL, Newcomb, JR, Rose, PE, Stover, DR, Toledo, LM, Zhao, H & Morgenstern, KA. (1999). Structural analysis of the lymphocyte-specific kinase Lck in complex with non-selective and Src family selective kinase inhibitors. Structure, 7, 651-661.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊