跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2025/12/31 19:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳介銘
研究生(外文):Jie-Ming Chen
論文名稱:水熱法製備鎂部分取代氫氧基磷灰石粉末及表面塗層於AZ91鎂合金之研究
論文名稱(外文):Preparation of Magnesium-Substituted Hydroxyapatite Powder and Coating on Magnesium Alloy AZ91 Surface by the Hydrothermal Method
指導教授:楊崇煒
指導教授(外文):Cheng-Wei Yang
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:93
中文關鍵詞:鎂合金水熱法鎂部分取代氫氧基磷灰石水滑石漢克模擬體液
外文關鍵詞:Magnesium alloyHydrothermal methodHydroxyapatiteMagnesium-substitutedHydrotalciteHank’s solution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:532
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本研究分為兩部分,第一部分以二水磷酸氫鈣(CaHPO4‧2H2O, DCPD)與氫氧化鈣( Ca(OH)2 )為反應物,固定鈣磷比1.67在去離子水中混合作為反應改變製程條件尋找粉末製備水熱製程的最佳條件,所有條件HAp粉末為粒徑20~70μm的片狀白色粉末,在沒有鎂摻雜的情況下製程條件175℃、20小時可得到結晶性最佳且無三斜磷鈣石雜相的HAp粉末,IOC分析結果顯示HAp結晶性隨著製程溫度以及製程時間的增加而增加。在反應物中添加1wt%的氫氧化鎂(Mg(OH)2),利用水熱製程合成鎂部分取代氫氧基磷灰石粉末Mg-HAp,摻雜鎂元素會使得最佳條件HAp粉末結晶性下降並使三斜磷鈣石雜相生成,XPS分析結果顯示晶體鍵結能有下降的情況,代表鎂摻雜有進入HAp晶格。
第二部分利用水熱製程在鎂合金表面製備水熱塗層。鎂合金前處理分為噴砂處理、非晶鎂鋁水滑石以及結晶鎂鋁水滑石用以比較表面效應的影響。水熱製程條件固定為150℃、6小時,塗層厚度50μm,是由氫氧化鎂、碳酸鈣、氫氧化鈣組成的混和塗層。藉由韋伯函數進行分析得知,水熱混合塗層破壞形態皆屬於損耗破壞模式,水滑石前處理會造成結合強度下降,並使得韋伯模數以及可靠度降低。將各條件試片進行模擬體液浸泡實驗,在37.5℃的漢克溶液內長時間浸泡並和氫氧化鎂塗層試片進行比較。在浸泡時間2天到32天,浸泡溶液鈣磷含量隨著浸泡時間明顯下降,試片表面鈣磷含量上升並發現表面析出缺鈣氫氧基磷灰石,明顯改善鎂合金在氯離子溶液中的腐蝕現象,提升生物相容性。


This study is divided into two parts. First, using dicalcium phosphate dehydrate (CaHPO4‧2H2O, DCPD) and Calcium Hydroxide (Ca(OH)2) as starting material, mixed with DI water. The Ca/P ratios in the starting slurry was 1.67. This study intends to optimize the synthesis parameters of hydroxyapatite (HAp) powders by hydrothermal method. All conditions of HAp powder prepared by this method is composed of sheet particle with size about 20 to 70μm. The optimized synthesized of HAp powder without magnesium doping at 175℃ for 20 hours has best crystallinity and eliminates DCPA impurity phase. Referring to the IOC% analysis results, the crystallinity increases while increasing process temperatures and process time. Adding 1 wt% Magnesium hydroxide (Mg(OH)2) in starting material to synthesize magnesium-substituted hydroxyapatite powder (Mg-HAp) by hydrothermal method. Doping magnesium reduces the best condition of HAp powder crystallinity and improve the dicalcium phosphate anhydrous (CaHPO4 ,DCPA)impurity phase. The XPS analysis results showrd magnesium doping reduces the HAp crystal binding energy.
Second, growth of hydrothermal coating on magnesium alloy AZ91 surface by hydrothermal method. Pre-treatment of Mg alloy sample was sand blast or Mg-Al hydrotalcite process to compare with surface effect. The hydrothermal process conditions are 150℃ for 6 hours. Mixed coating thickness is approximate 50μm. The mixed coating is composed of magnesium hydroxide, calcium carbonate and calcium hydroxide. From the analysis of Weibull distribution function, mixed hydrothermal coating are generally reliable materials with a wear-out failure model. Weibull modulus and reliability are reduced with pre-treatment of Mg-Al hydrotalcite process. Coating samples are immersed in Hank’s solution at 37.5℃ of various durations for 2 days to 32 days. The content of calcium and phosphorus for Hank’s solution are reduced, but for mixed coating surface are increased, with immersed from 2days to 32days. The mixed film is intend to make Calcium-deficient Hydroxyapatite deposition and improve Mg alloy corrosion in solution which contain chloride ion for great biocompatibility.


摘要 ...i
Abstract ...iii
致謝 ...v
總目錄 ...vi
表目錄 ...ix
圖目錄 ...x
第一章 前言 ...1
第二章 文獻回顧 ...2
2-1 生醫骨科材料 ...2
2-2氫氧基磷灰石 ...3
2-2-1氫氧基磷灰石體外合成方法 ...5
2-2-2氫氧基磷灰石室溫水溶液之穩定性 ...5
2-2-3氫氧基磷灰石離子置換 ...6
2-3 鎂合金 ...8
2-3-1 基本性質 ...8
2-3-2 鎂合金表面處理技術 ...9
2-3-3 鎂合金生醫應用 ...10
2-3-4 鎂鋁水滑石 ...12
2-4 可靠度工程與韋伯分布函數 ...13
2-4-1 數據變動的統計意義 ...13
2-4-2 韋伯分佈函數 ...15
第三章 實驗方法與步驟 ...28
3-1 實驗藥品與分析儀器 ...28
3-1-1 實驗藥品 ...28
3-1-2 實驗儀器 ...29
3-2 實驗方法與步驟 ...30
3-2-1 水熱法合成Mg-HAp粉末 ...30
3-2-2 水熱法於鎂合金表面析鍍HAp塗層製程 ...30
3-3 模擬體液浸泡實驗 ...31
3-4 塗層結合強度分析 ...31
3-5 量測與分析 ...34
3-5-1 X-Ray繞射分析 ...34
3-5-2 SEM微結構分析及EDS元素分析 ...34
3-5-3 傅立葉轉換紅外光光譜儀(FT-IR) ...35
3-5-4 光電子能譜儀分析 (XPS) ...35
3-5-5感應耦合電漿發射光譜分析儀(ICP-AES) ...35
第四章 結果與討論 ...41
4-1 HAp粉末性質 ...41
4-1-1 HAp粉末微觀組織觀察 ...41
4-1-2 HAp粉末XRD相組成鑑定 ...41
4-1-3 Mg-HAp FT-IR官能基分析 ...42
4-1-4 Mg-HAp XPS分析 ...43
4-2 HAp水熱塗層性質探討 ...53
4-2-1 試片前處理探討 ...53
4-2-2 HAp水熱塗層微觀組織觀察 ...54
4-2-3 HAp塗層相組成分析 ...54
4-2-4 模擬體液浸泡實驗 ...55
4-2-5 HAp塗層接著強度變動分析 ...56
第五章 結論 ...77
參考文獻 ...79
Extended Abstract ...87

[1]R. G. T. Geesink, K.de Groot, and C. P. A. Klein, “Bonding of bone to apatite-coated implants”,J. Bone Joint Surg.,70B(1988) 17-22
[2]R. G. T. Geesink, K.de Groot, and C. P. A. Klein, “Chemical implant fixation using hydroxyl-apatite coatings”,Clin. Orthop.,225(1987)147-170.
[3]J. E. Lemons, ”Hydroxyapatite coatings”, Clin. Orthop.,235(1988)220-223
[4]K. A. Thomas,J. F. Kay, S. D. Cook, and M. Jarcho, “The effect of surface macrotexture and hydroxyapatite coating on mechanical strength and histologic profiles of titanium implant materials”, J. Biomed. Mater. Res.,21 (1987) 1395-1414.
[5]D. Buser, R. K. Schenk, S. Steinemann, J. P. Fiorellini, C. H. Fox, and H. Stich, “Influence of surface characteristics on bone integration titanium implants, A histomorphometric study in miniature pigs“, J. Biomed. Mater. Res., 25(1991) 889-902.
[6]J. A. Jansen,J. P. C. M. Van de Waerden,J. G. C. Wolke, and K. De Groot, “Histologic evaluation of the osseous adaptation to titanium and hydroxy-apatite coated titanium implants”, J. Biomed. Mater. Res., 25(1991) 973-989.
[7]K. Soballe, E. S. Hansen, H. B. Rasmussen, C. M. Pedersen, and C. Bunger, “Hydroxyapatite coating enhances fixation of porous coated implants“, Acta Orthop. Scand.,61[4](1990)299-306.
[8]S. D. Cook, K. A. Thomas, J. F. Kay, and M. Jarcho, “Hydroxyapatite-coated porous titanium for use as an orthopedic biologic attachment system”, Clin Orthop., 230(1988)303-312.
[9]G. Heimke, “The aspects and methods of fixation of bone replacement”, in“Osseo-Integrated Implant Volume I Basics, Materials & Joint Replacement”, edited by G. Heimke, pp. 1~26, CRC Press Inc., Boca Raton, Florida,(1990)
[10]R. Garcia, and R. H. Doremus, “Electron microscopy of the bone-hydroxy-apatite interface from a human dental implant”, J. Matwe.Sci.:Mater. Med., 3 (1992) 154-161.
[11]A. Ravaglioli, and A. Krajewski, “Bioceramics: Materials, Properties, Applications”, pp. 44-45, Chapman & Hall Press, London, (1992).
[12]M. Jarcho, ”Calcium phosphate ceramics as hard tissue prosthetics”, Clin. Orthop.,157(1987)259-278
[13]L. L. Hench, “Bioceramics: from concept to clinic”,J. Am. Ceram. Soc., 74 (1991) 1487-1510.
[14]D. Bobyn, R. M. Pilliar, H. U. Cameron, and G. C. Weatherly, “The optimum pore size for the fixation of porous-surfaces metal implants by the ingrowth of bone”, Clin. Orthop., 150 (1980) 263-270.
[15]S. D. Cook, K. A. Walsh, and R. J. Haddad, “Interface mechanics and bone growth into porous Co-Cr-Mo alloy implants”, Clin. Orthop., 193 (1985) 271-280.
[16]T. Albrektsson, P. I. Branemark, H. A. Hansson, and J. Lindstrom, “Osseo-integrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man”, Acta Orthop. Scand., 52 (1981) 155-170.
[17]C. Johansson, J. Lausmaa, M. Ask, H. A. Hansson, and T. Albrektsson, “Ultra-structural differences of the interface zone between bone and Ti6Al4V or commercially pure titanium”, J. Biomed. Eng., 11 (1989) 3-8.
[18]J. W. McCutchen, J. P. Collier, and M. B. Mayer, “Osseointegration of titanium implants in total hip arthroplasty”, Clin. Orthop., 261 (1990) 114-125.
[19]S. Yoshii, Y. Kakutani, T. Yamamuro, T. Nakamura, T. Kitsugi, M. Oka, T. Kokubo, and M. Takagi, “Strength of bonding between A-W glass-ceramic and the surface of bone cortex”, J. Biomed. Mater. Res., 22 (1988) 327-338.
[20]T. Kitsugi, T. Yamamuro, H. Takeuchi, and M. Ono, “Bonding behavior of three types of hydroxyapatite with different sintering temperatures implanted in bone”, Clin. Orthop., 234 (1988) 280-290.
[21]G. L. de Lange, C. de Putter, and F. L. J. A. de Wijs, “Histological and ultra-structural appearance of the hydroxyapatite-bone interface”, J. Biomed. Mater. Res., 24 (1990) 829-845.
[22]H. A. Hoogendoom, W. Renooij, L. M. A. Akkermans, W. Visser, and P. Wittebol, “Long-term study of large ceramic implants (porous hydroxyapatite) in dog femora”, Clin. Orthop., 187 (1983) 281-288.
[23]C. A. van Blitterswijk, S. C. Hesseling, J. J. Grote, H. K. Koerten, and K. de Groot, “The biocompatibility of hydroxyapatite ceramic: A study of retrieved human middle ear implants”, J. Biomed. Mater. Res., 24 (1990) 433-453.
[24]K. de Groot, C. P. A. T. Klein, J. G. C. Wolke, and J. M. A. de Blieck-Hoger-vorst, “Chemistry of calcium phosphate bioceramics”, in “CRC Handbook of Bioactive Ceramics”, edited by T.Yamamuro, L. L. Hench, and J. Wilson, Vol. II, pp. 3-16, CRC Press Inc., Boca Raton, Florida (1990).
[25]F. Barbon, B. Locardi, M. Verita, G. Gabbi, C. Grispibni, P. T. Leali, E. B. del Prever, P. Gallinaro, G. Gerulli, G. L. del Bue G. Lualdi, E. V. Finzi, P. Giusti, and F. Marotti, “Biocompatibility and osteogenetic characteristics of new biocompatible glasses”, Biomaterials, 12 (1991) 565-568.
[26]T. Kitsugi, T. Yamamuro, and T. Kokubo, “Analysis of A-W glass-ceramic surface by micro-beam x-ray diffraction”, J. Biomed. Mater. Res., 24 (1990) 259-273.
[27]L. L. Hench, “Bioactive glasses and glass-ceramics: A perspective”, in “CRC Handbook of Bioactive Ceramics”, edited by T. Yamamuro, L. L. Hench, and J. Wilson, Vol. I, pp. 7-23, CRC Press Inc., Boca Raton, Florida (1990).
[28]S. Kotani, Y. Fujita, T. Kitsugi, T. Nakamura, and T. Yamamuro, “Bone bonding mechanism of p-tricalcium phosphate”, J. Biomed. Mater. Res., 25 (1991) 1303-1315.
[29]M. Neo, S. Kotani, Y. Fujita, T. Nakamura, and T. Yamamuro, “Differences in ceramic-bone interface between surface-active ceramics and resorbable ceramics: A study by scanning and transmission electron microscopy”, J. Biomed. Mater. Res., 26 (1992) 255-267.
[30]M. P. Staiger, A. M. Pietak, J. Huadmai, G. Dias, “Magnesium and its alloys as orthopedic biomaterials: A review”, Biomaterials., 27 (2006) 1728-1734.
[31]S. Shadanbaz, G. J. Dias, “Calcium phosphate coatings on magnesium alloys for biomedical applications: A review”, Acta Biomaterialia., 8 (2012) 20-30
[32]M. Yoshimura, and H. Suda, “Hydrothermal Processing of Hydroxyapatite: Part, Present and Future”, in: “Hydroxyapatite and Related Materials”, edited by P. W. Brown, and B. Constanz, pp. 45-72, CRC Press Inc., (1994).
[33]F. C. M. Driessens, “Formation and stability of calcium phosphates in relation to the phase composition of the mineral in calcified tissue”, in “Bioceramic of Calcium Phosphate”, edited by K. de Groot, pp. 1-32, CRC Press Inc., Boca Raton, Florida, (1983).
[34]D. Shi (Ed.), “Biomaterials and Tissue Engineering”, Springer, Berlin, Heidelberg, Printed in Germany, pp. 5-8, (2004).
[35]M. Jarcho, C. H. Bolen, M. B. Thomas, J. Bobick, J. F. Kay, and R. H. Doremus, “Hydroxyapatite synthesis and characterization in dense polycrystalline form”, J. Mater. Sci., 11 (1976) 2027-2035.
[36]T. Kijima, and M. Tsutsumi, “Preparation and thermal properties of dense poly-crystalline oxyhydroxyapatite”, J. Am. Ceram. Soc., 62 (1979) 455-460.
[37]G. de With, H. J. A. Vandijk, N. Hattu, and K. Prijs, “Preparation, microstructure and mechanical properties of dense polycrystalline hydroxyapatite”, J. Mater. Sci., 16 (1981) 1592-1598.
[38]T. Onoki, T. Hashida, “New method for hydroxyapatite coating of titanium by the hydrothermal hot isostatic pressing technique”, Surf. and Coat. Technol., 200 (2006) 6801-6807.
[39]P. Adam, A. Nebelung, and M. Vogt, “Verhalten von mit Tricalciumphosphat beschichteten Titanimplantaten bei der Behandlung mit Wasser von 80°C (Behavior of titanium implants coated with tricalcium phosphate during treatment with water at 80°C)”, Sprechsaal, 121[10] (1988) 941-944.
[40]A. S. Posner, A. Perloff, and A. D. Diorio, “Refinement of hydroxyapatite structure”, Acta. Cryst., 11 (1958) 308-309.
[41]S. Ogo, A. Onda, K. Yanagisawa, “Hydrothermal synthesis of vanadate-substituted hydroxyapatites, and catalytic properties for conversion of 2-propanolOriginal Research Article”, Applied Catalysis A: General, 348 (2008) 129-134
[42]F. Ren, R. Xin, X. Ge, Y. Leng, “ Characterization and structural analysis of zinc-substituted hydroxyapatites”, Acta Biomaterialia, 5 (2009) 3141-3149
[43]R.Z. LeGeros, “Calcium phosphates in oral biology and medicine” Karger AG, Basel, Switzerland(1991).
[44]R. Z. LeGeros, G. Daculsi,R. Kijkowska,B. Kerebel, “The effect of magnesium on the formation of apatites and whitlockites”, edited by Y. Itokawa, J. Durlach, pp. 11–9, Magnesium in health and disease, London, John Libbey; (1989).
[45]E. Bertoni, A. Bigi, G. Cojazzi, M. Gandolfi, S. Panzavolta, N. Roveri, “Nanocrystals of magnesium and fluoride substituted hydroxyapatite”, J Inorg Biochem, 72 (1998) 29–35.
[46]I. Mayer, R. Schlam, J.D.B. Featherstone, “Magnesium-containing carbonate apatites”, J Inorg Biochem, 66 (1997) 1-6.
[47]M. Okazaki, J. Takahashi, H. Kimura, “Comparison of crystallographic properties of Mg, Fe, Na, CO3, F, and Cl- containing apatites”, J. Osaka Univ. Dent. Sch., 26 (1986) 79–89.
[48]W. L. Suchanek, K. Byrappa, P. Shuk, R. E. Riman, V. F. Janas, K. S. TenHuisen, “Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical–hydrothermal method”, Biomaterials, 25 (2004) 4647-4657.
[49]J. Nagels, M. Stokdijk, P.M. Rozing, “Stress shielding and bone resorption in shoulder arthroplasty”, J Shoulder Elbow Surg, 12 (2003) 35–39
[50]ASM, Magnesium Alloys, Metals Handbook, 6 9th (1985) 425-434.
[51]賴耿陽, “非鐵金屬材料”, 復漢出版社, 台南, (1998) 174-191.
[52]賴耿陽, “工業材料之應用”, 復漢出版社, 台南, (1990) 35-38.
[53]C. R. Brooks, “Heat Treatment, Structure and Properties of Nonferrous Alloys”, ASM International, Metals Park, OH, (1984).
[54]ASM Metals Handbook, ASM International, Metals Park, OH, (1979)
[55]R. S. Busk, “Lattice Parameters of Magnesium Alloys”, Journal of Metals, ransactions Aime, 188 (1950) 1460-1464..
[56]F.A. Lowenheim, “Modern Electroplating”, Wiley, New York, (1974).
[57]J.B. Mohler, Metal Finishing, 30 (1974) 73.
[58]P.L. Hagans, C.M. Haas, “Chromate conversion coatings”, ASM International, 5(1994)405.
[59]馬寧元, “鎂合金表面處理簡介”, 鍛造, 1(2000)37。
[60]F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, “In vivo corrosion of four magnesium alloys and the associated bone response”, Biomaterials, 26 (2005) 3557–3563
[61]H. Hornberger, S. Virtanen, A. R. Boccaccini, “Biomedical coatings on magnesium alloys – A review”, Acta Biomaterialia, 8 (2012) 2442-2455.
[62]C. W. Yang, T. S. Lui, L. H. Che, “Hydrothermal crystallization effect on the improvement of erosion resistance and reliability of plasma-sprayed hydroxyapatite coatings” Thin Solid Films, 517 (2009) 5380-5385.
[63]Y. Zhu, G. Wu, Y. H. Zhang, Q. Zhao, “ Growth and characterization of Mg(OH)2 film on magnesium alloy AZ31 Original”, Applied Surface Science, 257 (2011) 6129-6137.
[64]X. N. Gua, W. Zheng, Y. Cheng, Y. F. Zheng, “A study on alkaline heat treated Mg–Ca alloy for the control of the biocorrosion rate”, Acta Biomaterialia, 5 (2009) 2790–2799.
[65]B. L. Yu, J. K. Lin, J. Y. Uan, “Applications of carbonic acid solution for developing conversion coatings on Mg alloy”, Transactions of Nonferrous Metals Society of China, 20 (2010) 1331–1339.
[66]J.K. Lin, J.Y. Uan, “Formation of Mg,Al-hydrotalcite conversion coating on Mg alloy in aqueous HCO3−/CO32−and corresponding protection against corrosion by the coating”, Corrosion Science, 51 (2009) 1181–1188.
[67]U. Costantino, V. Ambrogi, M. Nocchetti, L. Perioli, “Hydrotalcite-like compounds: Versatile layered hosts of molecular anions with biological activity”, Microporous and Mesoporous Materials, 107 (2008) 149–160
[68]Y.W. Song, D.Y. Shan, E.H. Han, “Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomedical application”, Mater Lett, 62 (2008) 3276–3279.
[69]Y. C. Yang, and E. Chang, “Influence of residual stress on bonding strength and fracture of plasma-sprayed hydroxyapatite coatings on Ti-6Al-4V substrate”, Biomaterials, 22 (2001) 1827-1836.
[70]Y. C. Yang, and E. Chang, “The bonding of plasma-sprayed hydroxyapatite coatings to titanium: effect of processing, porosity and residual stress”, Thin Solid Films, 444 (2003) 260-275.
[71]C. W. Yang, T. S. Lui, T. M. Lee, and E. Chang, “Effect of hydrothermal treatment on microstructural feature and bonding strength of plasma-sprayed hydroxyapatite on Ti-6Al-4V”, Mater. Trans. (JIM), 45[9] (2004) 2922-2929.
[72]W. Weibull, “A statistical distribution function of wide applicability”, J. Appl. Mech., 18 (1951) 293-297.
[73]M. F. Burrow, D. Thomas, M. V. Swain, and M. J. Tyas, “Analysis of tensile strengths using Weibull statistics”, Biomaterials, 25 (2004) 5031-5035.
[74]S. S. Scherrer, I. L. Denry, H. W. Anselm Wiskott, and Urs C. Belser, “Effect of water exposure on the fracture toughness and flexure strength of a dental glass”, Dent. Mater., 17 (2001) 367-371.
[75]R. S. Lima, and B. R. Marple, “High Weibull modulus HVOF titania coatings”, J. Therm. Spray Technol., 12[2] (2003) 240-249.
[76]R. S. Lima, and B. R. Marple, “Optimized HVOF titania coatings”, J. Therml. Spray Technol., 12[3] (2003) 360-369.
[77]S. H. Dickens, and B. H. Cho, “Interpretation of bond failure through conversion and residual solvent measurements and Weibull analyses of flexural and microtensile bond strengths of bonding agents”, Dent. Mater., 21 (2005) 354-364.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top