[1]R. G. T. Geesink, K.de Groot, and C. P. A. Klein, “Bonding of bone to apatite-coated implants”,J. Bone Joint Surg.,70B(1988) 17-22
[2]R. G. T. Geesink, K.de Groot, and C. P. A. Klein, “Chemical implant fixation using hydroxyl-apatite coatings”,Clin. Orthop.,225(1987)147-170.
[3]J. E. Lemons, ”Hydroxyapatite coatings”, Clin. Orthop.,235(1988)220-223
[4]K. A. Thomas,J. F. Kay, S. D. Cook, and M. Jarcho, “The effect of surface macrotexture and hydroxyapatite coating on mechanical strength and histologic profiles of titanium implant materials”, J. Biomed. Mater. Res.,21 (1987) 1395-1414.
[5]D. Buser, R. K. Schenk, S. Steinemann, J. P. Fiorellini, C. H. Fox, and H. Stich, “Influence of surface characteristics on bone integration titanium implants, A histomorphometric study in miniature pigs“, J. Biomed. Mater. Res., 25(1991) 889-902.
[6]J. A. Jansen,J. P. C. M. Van de Waerden,J. G. C. Wolke, and K. De Groot, “Histologic evaluation of the osseous adaptation to titanium and hydroxy-apatite coated titanium implants”, J. Biomed. Mater. Res., 25(1991) 973-989.
[7]K. Soballe, E. S. Hansen, H. B. Rasmussen, C. M. Pedersen, and C. Bunger, “Hydroxyapatite coating enhances fixation of porous coated implants“, Acta Orthop. Scand.,61[4](1990)299-306.
[8]S. D. Cook, K. A. Thomas, J. F. Kay, and M. Jarcho, “Hydroxyapatite-coated porous titanium for use as an orthopedic biologic attachment system”, Clin Orthop., 230(1988)303-312.
[9]G. Heimke, “The aspects and methods of fixation of bone replacement”, in“Osseo-Integrated Implant Volume I Basics, Materials & Joint Replacement”, edited by G. Heimke, pp. 1~26, CRC Press Inc., Boca Raton, Florida,(1990)
[10]R. Garcia, and R. H. Doremus, “Electron microscopy of the bone-hydroxy-apatite interface from a human dental implant”, J. Matwe.Sci.:Mater. Med., 3 (1992) 154-161.
[11]A. Ravaglioli, and A. Krajewski, “Bioceramics: Materials, Properties, Applications”, pp. 44-45, Chapman & Hall Press, London, (1992).
[12]M. Jarcho, ”Calcium phosphate ceramics as hard tissue prosthetics”, Clin. Orthop.,157(1987)259-278
[13]L. L. Hench, “Bioceramics: from concept to clinic”,J. Am. Ceram. Soc., 74 (1991) 1487-1510.
[14]D. Bobyn, R. M. Pilliar, H. U. Cameron, and G. C. Weatherly, “The optimum pore size for the fixation of porous-surfaces metal implants by the ingrowth of bone”, Clin. Orthop., 150 (1980) 263-270.
[15]S. D. Cook, K. A. Walsh, and R. J. Haddad, “Interface mechanics and bone growth into porous Co-Cr-Mo alloy implants”, Clin. Orthop., 193 (1985) 271-280.
[16]T. Albrektsson, P. I. Branemark, H. A. Hansson, and J. Lindstrom, “Osseo-integrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man”, Acta Orthop. Scand., 52 (1981) 155-170.
[17]C. Johansson, J. Lausmaa, M. Ask, H. A. Hansson, and T. Albrektsson, “Ultra-structural differences of the interface zone between bone and Ti6Al4V or commercially pure titanium”, J. Biomed. Eng., 11 (1989) 3-8.
[18]J. W. McCutchen, J. P. Collier, and M. B. Mayer, “Osseointegration of titanium implants in total hip arthroplasty”, Clin. Orthop., 261 (1990) 114-125.
[19]S. Yoshii, Y. Kakutani, T. Yamamuro, T. Nakamura, T. Kitsugi, M. Oka, T. Kokubo, and M. Takagi, “Strength of bonding between A-W glass-ceramic and the surface of bone cortex”, J. Biomed. Mater. Res., 22 (1988) 327-338.
[20]T. Kitsugi, T. Yamamuro, H. Takeuchi, and M. Ono, “Bonding behavior of three types of hydroxyapatite with different sintering temperatures implanted in bone”, Clin. Orthop., 234 (1988) 280-290.
[21]G. L. de Lange, C. de Putter, and F. L. J. A. de Wijs, “Histological and ultra-structural appearance of the hydroxyapatite-bone interface”, J. Biomed. Mater. Res., 24 (1990) 829-845.
[22]H. A. Hoogendoom, W. Renooij, L. M. A. Akkermans, W. Visser, and P. Wittebol, “Long-term study of large ceramic implants (porous hydroxyapatite) in dog femora”, Clin. Orthop., 187 (1983) 281-288.
[23]C. A. van Blitterswijk, S. C. Hesseling, J. J. Grote, H. K. Koerten, and K. de Groot, “The biocompatibility of hydroxyapatite ceramic: A study of retrieved human middle ear implants”, J. Biomed. Mater. Res., 24 (1990) 433-453.
[24]K. de Groot, C. P. A. T. Klein, J. G. C. Wolke, and J. M. A. de Blieck-Hoger-vorst, “Chemistry of calcium phosphate bioceramics”, in “CRC Handbook of Bioactive Ceramics”, edited by T.Yamamuro, L. L. Hench, and J. Wilson, Vol. II, pp. 3-16, CRC Press Inc., Boca Raton, Florida (1990).
[25]F. Barbon, B. Locardi, M. Verita, G. Gabbi, C. Grispibni, P. T. Leali, E. B. del Prever, P. Gallinaro, G. Gerulli, G. L. del Bue G. Lualdi, E. V. Finzi, P. Giusti, and F. Marotti, “Biocompatibility and osteogenetic characteristics of new biocompatible glasses”, Biomaterials, 12 (1991) 565-568.
[26]T. Kitsugi, T. Yamamuro, and T. Kokubo, “Analysis of A-W glass-ceramic surface by micro-beam x-ray diffraction”, J. Biomed. Mater. Res., 24 (1990) 259-273.
[27]L. L. Hench, “Bioactive glasses and glass-ceramics: A perspective”, in “CRC Handbook of Bioactive Ceramics”, edited by T. Yamamuro, L. L. Hench, and J. Wilson, Vol. I, pp. 7-23, CRC Press Inc., Boca Raton, Florida (1990).
[28]S. Kotani, Y. Fujita, T. Kitsugi, T. Nakamura, and T. Yamamuro, “Bone bonding mechanism of p-tricalcium phosphate”, J. Biomed. Mater. Res., 25 (1991) 1303-1315.
[29]M. Neo, S. Kotani, Y. Fujita, T. Nakamura, and T. Yamamuro, “Differences in ceramic-bone interface between surface-active ceramics and resorbable ceramics: A study by scanning and transmission electron microscopy”, J. Biomed. Mater. Res., 26 (1992) 255-267.
[30]M. P. Staiger, A. M. Pietak, J. Huadmai, G. Dias, “Magnesium and its alloys as orthopedic biomaterials: A review”, Biomaterials., 27 (2006) 1728-1734.
[31]S. Shadanbaz, G. J. Dias, “Calcium phosphate coatings on magnesium alloys for biomedical applications: A review”, Acta Biomaterialia., 8 (2012) 20-30
[32]M. Yoshimura, and H. Suda, “Hydrothermal Processing of Hydroxyapatite: Part, Present and Future”, in: “Hydroxyapatite and Related Materials”, edited by P. W. Brown, and B. Constanz, pp. 45-72, CRC Press Inc., (1994).
[33]F. C. M. Driessens, “Formation and stability of calcium phosphates in relation to the phase composition of the mineral in calcified tissue”, in “Bioceramic of Calcium Phosphate”, edited by K. de Groot, pp. 1-32, CRC Press Inc., Boca Raton, Florida, (1983).
[34]D. Shi (Ed.), “Biomaterials and Tissue Engineering”, Springer, Berlin, Heidelberg, Printed in Germany, pp. 5-8, (2004).
[35]M. Jarcho, C. H. Bolen, M. B. Thomas, J. Bobick, J. F. Kay, and R. H. Doremus, “Hydroxyapatite synthesis and characterization in dense polycrystalline form”, J. Mater. Sci., 11 (1976) 2027-2035.
[36]T. Kijima, and M. Tsutsumi, “Preparation and thermal properties of dense poly-crystalline oxyhydroxyapatite”, J. Am. Ceram. Soc., 62 (1979) 455-460.
[37]G. de With, H. J. A. Vandijk, N. Hattu, and K. Prijs, “Preparation, microstructure and mechanical properties of dense polycrystalline hydroxyapatite”, J. Mater. Sci., 16 (1981) 1592-1598.
[38]T. Onoki, T. Hashida, “New method for hydroxyapatite coating of titanium by the hydrothermal hot isostatic pressing technique”, Surf. and Coat. Technol., 200 (2006) 6801-6807.
[39]P. Adam, A. Nebelung, and M. Vogt, “Verhalten von mit Tricalciumphosphat beschichteten Titanimplantaten bei der Behandlung mit Wasser von 80°C (Behavior of titanium implants coated with tricalcium phosphate during treatment with water at 80°C)”, Sprechsaal, 121[10] (1988) 941-944.
[40]A. S. Posner, A. Perloff, and A. D. Diorio, “Refinement of hydroxyapatite structure”, Acta. Cryst., 11 (1958) 308-309.
[41]S. Ogo, A. Onda, K. Yanagisawa, “Hydrothermal synthesis of vanadate-substituted hydroxyapatites, and catalytic properties for conversion of 2-propanolOriginal Research Article”, Applied Catalysis A: General, 348 (2008) 129-134
[42]F. Ren, R. Xin, X. Ge, Y. Leng, “ Characterization and structural analysis of zinc-substituted hydroxyapatites”, Acta Biomaterialia, 5 (2009) 3141-3149
[43]R.Z. LeGeros, “Calcium phosphates in oral biology and medicine” Karger AG, Basel, Switzerland(1991).
[44]R. Z. LeGeros, G. Daculsi,R. Kijkowska,B. Kerebel, “The effect of magnesium on the formation of apatites and whitlockites”, edited by Y. Itokawa, J. Durlach, pp. 11–9, Magnesium in health and disease, London, John Libbey; (1989).
[45]E. Bertoni, A. Bigi, G. Cojazzi, M. Gandolfi, S. Panzavolta, N. Roveri, “Nanocrystals of magnesium and fluoride substituted hydroxyapatite”, J Inorg Biochem, 72 (1998) 29–35.
[46]I. Mayer, R. Schlam, J.D.B. Featherstone, “Magnesium-containing carbonate apatites”, J Inorg Biochem, 66 (1997) 1-6.
[47]M. Okazaki, J. Takahashi, H. Kimura, “Comparison of crystallographic properties of Mg, Fe, Na, CO3, F, and Cl- containing apatites”, J. Osaka Univ. Dent. Sch., 26 (1986) 79–89.
[48]W. L. Suchanek, K. Byrappa, P. Shuk, R. E. Riman, V. F. Janas, K. S. TenHuisen, “Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical–hydrothermal method”, Biomaterials, 25 (2004) 4647-4657.
[49]J. Nagels, M. Stokdijk, P.M. Rozing, “Stress shielding and bone resorption in shoulder arthroplasty”, J Shoulder Elbow Surg, 12 (2003) 35–39
[50]ASM, Magnesium Alloys, Metals Handbook, 6 9th (1985) 425-434.
[51]賴耿陽, “非鐵金屬材料”, 復漢出版社, 台南, (1998) 174-191.
[52]賴耿陽, “工業材料之應用”, 復漢出版社, 台南, (1990) 35-38.
[53]C. R. Brooks, “Heat Treatment, Structure and Properties of Nonferrous Alloys”, ASM International, Metals Park, OH, (1984).
[54]ASM Metals Handbook, ASM International, Metals Park, OH, (1979)
[55]R. S. Busk, “Lattice Parameters of Magnesium Alloys”, Journal of Metals, ransactions Aime, 188 (1950) 1460-1464..
[56]F.A. Lowenheim, “Modern Electroplating”, Wiley, New York, (1974).
[57]J.B. Mohler, Metal Finishing, 30 (1974) 73.
[58]P.L. Hagans, C.M. Haas, “Chromate conversion coatings”, ASM International, 5(1994)405.
[59]馬寧元, “鎂合金表面處理簡介”, 鍛造, 1(2000)37。[60]F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, “In vivo corrosion of four magnesium alloys and the associated bone response”, Biomaterials, 26 (2005) 3557–3563
[61]H. Hornberger, S. Virtanen, A. R. Boccaccini, “Biomedical coatings on magnesium alloys – A review”, Acta Biomaterialia, 8 (2012) 2442-2455.
[62]C. W. Yang, T. S. Lui, L. H. Che, “Hydrothermal crystallization effect on the improvement of erosion resistance and reliability of plasma-sprayed hydroxyapatite coatings” Thin Solid Films, 517 (2009) 5380-5385.
[63]Y. Zhu, G. Wu, Y. H. Zhang, Q. Zhao, “ Growth and characterization of Mg(OH)2 film on magnesium alloy AZ31 Original”, Applied Surface Science, 257 (2011) 6129-6137.
[64]X. N. Gua, W. Zheng, Y. Cheng, Y. F. Zheng, “A study on alkaline heat treated Mg–Ca alloy for the control of the biocorrosion rate”, Acta Biomaterialia, 5 (2009) 2790–2799.
[65]B. L. Yu, J. K. Lin, J. Y. Uan, “Applications of carbonic acid solution for developing conversion coatings on Mg alloy”, Transactions of Nonferrous Metals Society of China, 20 (2010) 1331–1339.
[66]J.K. Lin, J.Y. Uan, “Formation of Mg,Al-hydrotalcite conversion coating on Mg alloy in aqueous HCO3−/CO32−and corresponding protection against corrosion by the coating”, Corrosion Science, 51 (2009) 1181–1188.
[67]U. Costantino, V. Ambrogi, M. Nocchetti, L. Perioli, “Hydrotalcite-like compounds: Versatile layered hosts of molecular anions with biological activity”, Microporous and Mesoporous Materials, 107 (2008) 149–160
[68]Y.W. Song, D.Y. Shan, E.H. Han, “Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomedical application”, Mater Lett, 62 (2008) 3276–3279.
[69]Y. C. Yang, and E. Chang, “Influence of residual stress on bonding strength and fracture of plasma-sprayed hydroxyapatite coatings on Ti-6Al-4V substrate”, Biomaterials, 22 (2001) 1827-1836.
[70]Y. C. Yang, and E. Chang, “The bonding of plasma-sprayed hydroxyapatite coatings to titanium: effect of processing, porosity and residual stress”, Thin Solid Films, 444 (2003) 260-275.
[71]C. W. Yang, T. S. Lui, T. M. Lee, and E. Chang, “Effect of hydrothermal treatment on microstructural feature and bonding strength of plasma-sprayed hydroxyapatite on Ti-6Al-4V”, Mater. Trans. (JIM), 45[9] (2004) 2922-2929.
[72]W. Weibull, “A statistical distribution function of wide applicability”, J. Appl. Mech., 18 (1951) 293-297.
[73]M. F. Burrow, D. Thomas, M. V. Swain, and M. J. Tyas, “Analysis of tensile strengths using Weibull statistics”, Biomaterials, 25 (2004) 5031-5035.
[74]S. S. Scherrer, I. L. Denry, H. W. Anselm Wiskott, and Urs C. Belser, “Effect of water exposure on the fracture toughness and flexure strength of a dental glass”, Dent. Mater., 17 (2001) 367-371.
[75]R. S. Lima, and B. R. Marple, “High Weibull modulus HVOF titania coatings”, J. Therm. Spray Technol., 12[2] (2003) 240-249.
[76]R. S. Lima, and B. R. Marple, “Optimized HVOF titania coatings”, J. Therml. Spray Technol., 12[3] (2003) 360-369.
[77]S. H. Dickens, and B. H. Cho, “Interpretation of bond failure through conversion and residual solvent measurements and Weibull analyses of flexural and microtensile bond strengths of bonding agents”, Dent. Mater., 21 (2005) 354-364.