跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/27 05:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐廼杰
研究生(外文):HSU,NAI-CHIEH
論文名稱:增強場發射特性之氧化鋅-鋅核殼結構奈米線
論文名稱(外文):Enhancement on field emission properties of nanowires using ZnO-Zn core-shell heterostructure
指導教授:楊素華楊素華引用關係
指導教授(外文):YANG,SU-HUA
口試委員:張守進朱聖緣楊證富陳立軒楊素華
口試委員(外文):CHANG,SHOOU-JINNCHU,SHENG-YUANYANG,CHENG-FUCHEN,LIH-SHANYANG,SU-HUA
口試日期:2016-07-08
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:119
中文關鍵詞:氧化鋅奈米線場發射特性
外文關鍵詞:ZnO nanowiresfield emission
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們成功使用氣相傳輸法在沉積ZnO:Al(AZO)種晶層的矽(Si)基板上成長出氧化鋅奈米結構,並藉由改變成長參數獲得條件最佳的氧化鋅奈米線(Nanowires,NWS)。我們使用碳熱還原法將氧化鋅和碳混和,藉著氣相的傳輸機制合成氧化鋅奈米結構,並探討氧化鋅奈米線的形貌、發光特性,最後在氧化鋅奈米線表面披覆鋅粉改善場發射特性。
製作時,首先在矽基板上使用射頻磁控濺鍍系統沉積摻雜鋁之氧化鋅種晶層,其主要目的是取代金屬催化劑,以解決氧化鋅奈米結構與矽基板間晶格不匹配之問題,並提供成核位置供奈米結構成長。接著改變升溫速率、成長溫度與成長時間以合成氧化鋅奈米線並觀察其形貌,並探討成長機制對氧化鋅奈米結構之影響,最後披覆鋅粉在氧化鋅奈米線表面,藉由改變披覆鋅粉與氧化鋅奈米線的距離與時間,找出最佳的場發射特性,預期在未來於場發射顯示器將極具潛力。
合成氧化鋅奈米線最佳成長條件為:氧化鋅粉及石墨粉以重量百分比1:1混合作為材料源;升溫速率、成長溫度及成長時間分別為30℃/min、1000℃、及30分鐘;氬氣(Ar)流量為100 sccm與氧氣(O)流量為10 sccm,成長壓力維持在10 torr。另外,最佳鋅粉與氧化鋅奈米線的蒸鍍距離與時間分別為3公分與3分鐘,披覆鋅粉的氧化鋅奈米線在場發射量測中,具有優良穩定性,當電流密度為10 μA/cm2 時,具有低啟動電場0.7 V/μm,且最高的場增強因子為18108。

In this theme, the ZnO nanowires were successfully grown on the ZnO:Al (AZO) seed layer deposited silicon substrate via vapor transport method. Through variation of the growth parameters for the synthesis of ZnO nanowires, ultra-low turn-on field of ZnO nanowires were obtained. We used the carbothermal reduction method and vapor transport mechanism to synthesis ZnO nanowires. The morphology crystallinity and the luminescence properties of ZnO nanowires were investigated. Finally, ZnO nanowires were coated by Zn to improve their field emission characteristics.
For the growth of ZnO nanowires, first, an AZO seed layer was deposited on a silicon substrate by RF magnetron sputtering method, which was used to replace the metal catalysts in order to improve the lattice mismatch between the ZnO nanowires and the silicon substrate. Meanwhile, the AZO seeds acted as nucleation sites for the growth of ZnO nanowires. After the optimal property of seed layer was obtained, the parameters of heating rate, growth temperature and growth time were varied to synthesize the optimal properties of ZnO nanowires. In addition, the morphology and crystallinity of nanowires were discussed, the growth mechanism was investigated as well. Furthermore, Zn was coated on the surface of ZnO nanowires. The substrate and source distance and coating time were optimited.
The optimal characteristics of ZnO nanowires were obtained when the ZnO sources and graphite were mixed with a weight ratio of 1:1 and baked with a heating rate of 30℃/min. The growth temperature was 1000℃ and growth time was 30 minutes; Ar and O2 flow rates were 100 and 10 sccm, respectively, and the growth pressure was maintained at 10 torr. On the other hand, the best coating distance and coating time of zinc were 3 cm and 3 min, respectively. Field emission analyses showed the lowest turn-on field of 0.7 V/μm was measured when the current density was at 10 μA/cm2, with the highest field enhancement factor of 18108.

摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 XI
表目錄 XVI
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機 7
第二章 基礎理論 8
2-1 半導體(Semiconductor) 8
2-1-1 氧化鋅(Zinc oxide,ZnO)結構與特性 8
2-1-2 氧化鋅的光學性質 9
2-1-3 氧化鋅的電學性質 10
2-2 一維奈米製程 11
2-2-1 成長方法 11
2-2-2 成長機制 13
2-3 濺鍍原理 14
2-3-1 電漿(Plasma) 14
2-3-2 直流濺鍍(DC sputtering) 14
2-3-3 射頻濺鍍(RF sputtering) 15
2-3-4 磁控濺鍍 15
2-4 披覆原理 16
2-4-1 奈米核殼複合材料 16
2-4-2 原子層沉積 (Atomic layer deposition, ALD) 16
2-4-3 真空蒸鍍(Vacuum evaporation depostion) 17
2-5 Fowler-Nordheim定理 18
第三章 實驗步驟與量測分析系統 21
3-1 實驗材料 21
3-2 實驗過程 21
3-2-1 基板製備 21
3-2-2 射頻濺鍍(RF Sputter) 22
3-2-3 氧化鋅奈米結構成長 22
3-2-4 蒸鍍步驟 23
3-3 分析系統 24
3-3-1 高解析掃瞄式電子顯微鏡(Ultrahigh resolution scanning electron microscope,HR-SEM) 24
3-3-2 X光繞射儀(X-ray diffraction,XRD) 25
3-3-3 穿透式電子顯微鏡(Transmission electron microscopy,TEM) 25
3-3-4 螢光光譜儀(Photoluminescsnce,PL) 26
3-3-5 熱阻式真空蒸鍍機 27
3-3-6 場發射量測 27
第四章 結果與討論 28
4-1 氧化鋅晶種層 28
4-1-1 表面形態分析 28
4-2 升溫速率對氧化鋅奈米結構的影響 29
4-2-1 表面形態分析 29
4-2-2 X光繞射儀(X-ray diffraction,XRD) 30
4-2-3 螢光發光譜儀 (Photoluminescence,PL) 31
4-2-4 場發射特性 32
4-3 成長溫度對氧化鋅奈米結構的影響 33
4-3-1 表面形態分析 33
4-3-2 X光繞射儀(X-ray diffraction,XRD) 34
4-3-3 螢光發光譜儀 (Photoluminescence,PL) 34
4-3-4 場發射特性 35
4-4 成長時間對氧化鋅奈米結構的影響 36
4-4-1 表面形態分析 36
4-4-2 穿透式電子顯微鏡 (Transmission electron microscopy TEM) 37
4-4-3 X光繞射儀(X-Ray diffraction,XRD) 38
4-4-4 螢光發光譜儀 (Photoluminescence,PL) 38
4-4-5 場發射特性 39
4-5 改變披覆鋅粉距離探討對氧化鋅奈米線之影響 39
4-5-1 表面形態分析 40
4-5-2 X光繞射儀 (X-ray diffraction,XRD) 41
4-5-3 場發射特性 41
4-6 改變披覆鋅粉時間探討對氧化鋅奈米線之影響 42
4-6-1 表面形態分析 42
4-6-2 穿透式電子顯微鏡 (Transmission electron microscopy TEM) 43
4-6-3 X光繞射儀 (X-ray diffraction,XRD) 43
4-6-4 場發射特性 44
第五章 結論 46
參考文獻 48
論文集 54

[1]G. Timp, New York: Springer-Verlag (1998) 1.
[2]A.D. Yoffe, Advances in Physics 51 (2002) 799.
[3]Dingle, R., Proceedings of 13th International Conference onthe Physics of Semiconductors, Rome, edited by F. G. Fumi 45 (1976) 965.
[4]S. Iijima, Nature 354 (1991) 56.
[5]K.M.A. Saron, M.R. Hashim, M,A, Farrukh, Superlattice and Microstructures 64 (2013) 88.
[6]Y. Zhang, Y. Li, Journal of Chemical Physics B 108 (2004) 17805.
[7]J.C. Fan, K.M. Sreekanth, Z. Xie, S.L. Chang, K.V. Rao, Progress in Materials Science 58 (2013) 874.
[8]M. Herrmann, K. Schönfeld, H. Klemm, W. Lippmann, A. Hurtado, A. Michaelis Journal of the European Ceramic Society 34 (2014) 2913.
[9]B.M. Ataev, I.K. Kamilov, V.V. Mamedov, Technical Physics Letters 23 (1997) 842.
[10]H. Saitoh, M. Saitoh, N. Tanaka, Y. Ueda, S. Ohshio, Journal of Chemical Physics 38 (1999) 6873.
[11]R. Konenkamp, K. Boedecker, M.C. Lux-Steiner, M.Poschenrieder, F. Zenia, C.L. Clement, S. Wagner, Applied Physics Letters 77 (2000) 2575.
[12]A. Umar, Y.B. Hahn, Nanotechnology 17 (2006) 2174.
[13]G.H. Du, F. Xu, Z.Y. Yuan, G. Van Tendeloo, Applied Physics Letters 88 (2006) 243101.
[14]Z. Fang, K.B. Tang, G.Z. Shen, D. Chen, R. Kong, S.J. Lei, Materials Letters 60 (2006) 2530.
[15]C.X. Xu, X.W. Sun, Journal of Crystal Growth 277 (2005) 330.
[16]J. Wang, J.M. Cao, B.Q. Fang, P. Lu, S.G. Deng, H.Y. Wang, Materials Letters 59 (2005) 1405.
[17]M. Fu, J. Zhou, Q.F. Xiao, B. Li, R.L. Zong, W. Chen, J. Zhang, Advanced Materials 18 (2006) 1001.
[18]W.J. Lee, J. Kang, K.J. Chang, Physical B 376-377 (2006) 699.
[19]C.C. Lin, S.Y. Chen, S.Y. Cheng, Applied Surface Science 238 (2004) 405.
[20]J.B. Baxter, E.S. Aydil, Applied Physics Letters 86 (2005) 053114.
[21]P. Sahoo, S. Dhara, S. Dash, S. Amirthapandian, K. Prasad, A.K. Tyagi, International Journal of Hydrogen Energy 38 (2013) 3513.
[22]K. Ramamoorthy, M. Arivanandhan, K. Sankaranarayanan, C. Sanjeeviraja, Mater. Chem. Phys. 85 (2004) 257.
[23]R. H. Fowler and L. W. Nordheim, “Electron Emission in Intense Electric Fields”, Proceedings of the Royal Society A 119 (1928) 173.
[24]L. Liao, J.C. Li, D.F. Wang, C. Liu, Q. Fu, Materials Letters 59 (2005) 2465.
[25]C.X. Xu, X.W. Sun, B.J. Chen, Applied Physics Letters 84 (2004) 1540.
[26]J.L. Wang, T.Y. Hsieh, P.Y. Yang, C.C. Hwang, D.C. Shye, I.C. Lee, Surface & Coatings Technology 231 (2013) 423.
[27]Z. Zhang, J. Huang, H. He, S. Lin, H. Tang, H. Lu, Z. Ye, Solid-State Electronics 53 (2009) 578.
[28]G. Meng, X. Fang, Y. Zhou, J. Seo, W. Dong, S. Hasegawa, H. Asahi, H. Tambo, M. Kong, Liang Li, Journal of Alloys and Compounds 491 (2010) 72.
[29]Q. Zhao, R. Zhu, S. Wang, X.F. Rui, D. Yu, Applied Physics A 106 (2012) 557.
[30]L.M. Yu, X.H. Fan, L.J. Qi, W. Yan, Applied Surface Science 257 (2011) 6332.
[31]S. Wang, J. Wang, P. Miraldo, M. Zhu, R. Outlaw, K. Hou, X. Zhao, B.C. Holloway, D. Manos, T. Tyler, O. Shenderova, M. Ray, J. Dalton, G. McGuire, Applied Physics Letters 89 (2006) 183103.
[32]H.G. Na, H.Y. Cho, Y.J. Kwon, S.Y. Kang, C. Lee, T.K. Jung, H.S. Lee, H. Kim, Thin Solid Films 588 (2015) 11.
[33]I. Sameera, R. Bhatia, V. Prasad, Materials Science and Engineering B 177 (2012) 1090.
[34]Z.J. Li, B.C. Yang, G.Q. Yun, S.R. Zhang, M. Zhang, M.X. Zhao, Journal of Alloys and Compounds 550 (2013) 353.
[35]K.J. Sankaran , M. Afsal, S.C. Lou, H.C. Chen, C. Chen , C.Y. Lee, L.J. Chen, N.H. Tai, and I.N. Lin, Small 10 (2014) 179.
[36]H. Yin, C. Song, Z. Wang, B. Guo, K. Yu, Appl. Surf. Sci. 345 (2015) 256.
[37]S. Lv, Z. Li, C. Chen, J. Liao, G. Wang, M. Li, and W. Miao, Appl. Mater. Interfaces.7 (2015) 13564.
[38]L. Chen, H. He, H. Yu, Y. Cao, D. Lei, QiQiGe Menggen, C. Wu, L. Hu, Journal of Alloys and Compounds 610 (2014) 659.
[39]H.M. Kim, Y.H. Cho, H. Lee, S.I. I. Kim, S.R. Ryu, D.Y. Kim, T.W. Kang, and K.S. Chung, Nano Lett. 14 (2003) 1059.
[40]L.F. Dong, J. Jiao, D.W. Tuggle, J.M. Petty, S.A. Elliff, and M. Coulter, Appl. Phys. Lett. 82 (2003) 1096-1098.
[41]A. N. Red’kin, Z.I. Makovei, A.N. Gruzintsev, S.V. Dubonons, E.E. Yakimov, Inorganic Materials 43 (2007) 253.
[42]M. Wei, D. Zhi, J. L. MacManus-Driscoll, Nanotechnology 16 (2005) 1364.
[43]J. H. Park, H. G. Choi, J. H. Kim, D. K. Kim, Solid State Phenomena 1169 (2007) 124.
[44]M. Wei, J. L. MacManus-Driscoll, Journal of Physics: Conference Series 26 (2006) 300.
[45]A. Reiser, V. Raeesi, G. M. Prinz, M. Schirra, M. Feneberg, U. Roder, R. Sauer, K. Thonke, Microelectronics Journal 40 (2009) 306.
[46]A.B. Djurišić, Y.H. Leung, K.H. Tam, L. Ding, W.K. Ge, H. Y. Chen and S. Gwo, Applied Physics Letters 88 (2006) 103107.
[47]K. Vanheusden, W.L. Warren, C. H. Seager, D. R. Tallant, J.A. Voigt and B.E. Gnade, Journal of Applied Physics 79 (1996) 7983.
[48]D. R. Vij, N. Singh, Nova Science Publishers, N. Y. (1998).
[49]B. Lin, Z. Fu, Y. Jia and G. Liao, Journal of The Electrochemical Society 148 (2001) G110.
[50]E. G. Bylander, Journal of Applied Physics 49 (1978) 1188.
[51]B. Cao, J. Chen, R. Huang, Y.H. Ikuhara, T. Hirayama, W. Zhou, Journal of Crystal Growth 316 (2011) 46.
[52]F. Cai, L. Zhu, H. He, J. Li, Y. Yang, X. Chen, Z. Ye, Journal of Alloys and Compounds 509 (2011) 316.
[53]P.S. Kumara, P. Paik, A.D. Raj, D. Mangalaraj, D. Nataraj, A. Gedanken, S. Ramakrishna, Applied Surface Science 258 (2012) 6765.
[54]L. Li, H. Yang, J. Yu, Y. Chen, J. Ma, J. Zhang, Y. Song, F. Gao, Journal of Crystal Growth 311 (2009) 4199.
[55]Y.S. Lim, J.W. Park, S.-T. Hong, J. Kim, Materials Science and Engineering: B,129 (2006) 100.
[56]R.S. Wagner and W. C. Ellis, Applied Physics Letters 4 (1964) 89.
[57]P. Yang , C. M. Lieber, Science, 273 (1996) 1836.
[58]F. Wang, X. Cai, D. Yan, Z. Zhu, S. Xiao, X. Gu, Super lattices and Microstructures 72 (2014) 83.
[59]高濂,孫靜,劉陽橋,奈米粉體的分散及表面改性,(2005),p.270
[60]Y. Wu, P. Yang, Journal of the American Chemical Society 123 (2001) 3165.
[61]Y.H. Yang, C.X. Wang, B. Wang, N.S. Xu, G.W. Yang, Chemical Physics Letters 403 (2005) 248.
[62]S.H. Yang, Y.M. Hsu, M.W. Tsai, T.J. Hsueh, Japanese Journal of Applied Physics 53 (2014) 035002.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊