跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 23:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉昱辰
研究生(外文):Yuchen Liu
論文名稱:三維黏性水槽應用於海洋工程之模擬研究
論文名稱(外文):Simulation of a Three-Dimensional Numerical Viscous Wave Tank and Its Applications
指導教授:陳永為
指導教授(外文):Chen,Yung-Wei
口試委員:劉進賢張建仁
口試委員(外文):Liu, Chein-ShanChang, Jiang-Ren
口試日期:2016-07-15
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:輪機工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:103
語文別:中文
論文頁數:62
中文關鍵詞:計算流體力學造波水槽數值水槽拍板造波二項流
外文關鍵詞:Computational Fluid DynamicWave TankNumerical TankPlank Type Wave MakerTwo-phase Flow
相關次數:
  • 被引用被引用:0
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本研究之主軸為發展一數值波浪水槽。本文基於雷諾時均方程(Reynolds-averaged Navier–Stokes equations, RANs)作為控制方程式,透過有限體積法,採用k-epsilon紊流模型,及VOF(Volume of Fluid)法,通過求解Navier-Stokes方程來實現數值造波的方法。本文通過UDF(User Define Function)程式碼實現了邊界造波方法、拍板造波方法。
實際的造波水槽在工程上,必須使用大量的人力,大量的金錢成本與時間成本來維持水槽的機械設備,並且在測量上也會產生許多測量不準確、數值測量上的不方便等問題。在傳統的數值水槽上,雖然使用勢流理論進行造波,避免流體上因物理黏滯性產生的誤差,其結果近似於理論解析,但其數值結果卻與實際的物理現象存在著黏性誤差結果。但使用黏性造波數值水槽進行模擬,將進而產生數值不穩定之現象,其原因為自由液面之波浪行為難收斂、自由液面網格數量不夠或者求解之時間步長過大等原因。
本文擬克服上述困難問題,並建構二維數值造波水槽與三維數值造波水槽,其三維數值造波水槽誤差介於10%以內,並將結構物置入三維數值造波水槽中進行船模波浪測試,其模擬結果符合實際物理現象及合理性。因此由文中數值算例再次證明,本文所建構之數值水槽具有準確性、快速性、穩定性。

In this thesis, the main propose is to generating a feasiblly numerical wave tank. We solved the problem which is combined with the Navier-Stokes equation on RANS equation, finite volume method, k-epsilon turblent model, and VOF(Volume of Fluid). Using the UDF(User Define Function) achieved the boundary type wave method, and the plank type wave method.
In actual, wave tank needs lots of labor costs, money costs, and time costs to keep the machine well. Furthermore, it would have trouble in gauging accurately, and conveniently. In traditional numerical tank, although they make wave basing on potential flow to avoid the error from physical viscosity. The result is similar to analytical solution, but it is different to actual phenomenon by viscosity. Moreover, using viscosity to simulate numerical tank would cause the unstable numerical, because of the difficult in converging at free surface, and the quantity of grid at free surface being not enough, etc.
In this thesis, in order to overcome above problems, we use to simulate wave phenomenon by 2D and 3D wave tank. From 3D tank, we obtained the relative error which is small than 10%; Further, we use to simulate the ship model test by this one under large wave. From numerical results, we can obtain accurate and stable numerical results correspond the actual phenomenon Hence, we successfully apply CFD to obtain stable and accurate wave tank.

謝辭
摘要 I
ABSTRACT II
目錄 III
圖目錄 VI
表目錄 VIII
符號對照表 IX
第一章緒論 1
1.1 前言 1
1.2 動機與目的 2
1.3文獻回顧 2
1.4本文架構 4
第二章理論基礎 6
2.1控制方程 6
2.1.1 質量守恆方程 6
2.1.2 動量守恆方程 6
2.2 紊流模型方程 7
2.2.1 紊流模型 8
2.3自由液面處理方法 10
2.4初始條件和邊界條件 12
2.5 近壁處理 13
2.6求解方法 14
2.7 網格技術 15
第三章波浪理論 19
3.1造波方法 19
3.1.1拍板式造波理論 19
3.1.2邊界式造波理論 20
3.1.3 消波區理論 20
3.2二階 Stokes 波理論 21
3.3水槽模型 23
3.3.1拍板式造波模型與邊界條件 23
3.3.2邊界式造波模型與邊界條件 23
3.4網格劃分 25
3.4.1拍板式造波網格示意圖 25
3.4.2邊界式造波網格示意圖 27
3.5數值結果與驗證解析 27
3.5.1拍板式造波數值結果 27
3.5.2邊界式造波數值結果 32
3.5.3 小結 35
第四章三維數值造波水槽之模擬 36
4.1三維造波水槽水槽模型 36
4.1.1三維模型概念 36
4.1.2三維模型與邊界條件 36
4.2三維造波水槽網格劃分 38
4.3三維造波水槽與波浪參數 38
4.4 數值結果與驗證解析 39
4.5 船體結構應用於數值水槽 45
4.5.1 計算模型與邊界條件 45
4.5.2 算例網格劃分 49
4.5.3 一倍波長之波高 50
4.5.4 阻力系數數值結果與討論 50
第五章結論與未來展望 54
參考文獻 56

[1]. A. Afshar, Mostafa. "Numerical wave generation in Open FOAM®.", 2010.
[2]. M. Anbarsooz, M. Passandideh-Fard, and M. Moghiman. "Fully nonlinear viscous wave generation in numerical wave tanks." Ocean Engineering, vol.59 , pp.73-85,2013.
[3]. G. Bellotti, G. M. Beltrami, and P. D. Girolamo. "Internal generation of waves in 2D fully elliptic mild-slope equation FEM models."Coastal Engineering, vol. 49,pp.71-81, 2003.
[4]. K. Bhaganagar, and T. J. Hsu. "Direct numerical simulations of flow over two-dimensional and three-dimensional ripples and implication to sediment transport: Steady flow." Coastal Engineering, vol. 56, pp. 320-331, 2013.
[5]. D. Bruno, F. D. Serio, and M. Mossa. "The FUNWAVE model application and its validation using laboratory data." Coastal Engineering, vol. 56, pp. 773-787, 2009.
[6]. A. Chawla, and J. T. Kirby. "A source function method for generation of waves on currents in Boussinesq models." Applied Ocean Research, vol. 22, pp. 75-83, 2000.
[7]. C. J. Chen. "Fundamentals of turbulence modelling." CRC Press, 1997.
[8]. A. S. Chitrapu, R. C. Ertekin, and J. R. Paulling. "Viscous drift forces in regular and irregular waves." Ocean engineering, vol. 20, pp. 33-55, 1993.
[9]. J. Choi, and S. B. Yoon. "Numerical simulations using momentum source wave-maker applied to RANS equation model." Coastal Engineering, vol. 56, pp. 1043-1060, 2009.
[10]. C. R. Chou, J. Z. Yim, and R. S. Shih. "Optimizing deployment of sponge zone on numerical wave channel." Journal of the Chinese Institute of Engineers, vol. 25, pp. 147-156, 2002.
[11]. R. Courant, K. Friedrichs, and H. Lewy. "Über die partiellen Differenzengleichungen der mathematischen Physik." Mathematische annalen, vol.100, pp. 32-74, 1928.
[12]. R. G. Dean, and R. A. Dalrymple. "Water wave mechanics for engineers and scientists." ,1991.
[13]. C. M. Dong, and C. J. Huang. "Generation and propagation of water waves in a two-dimensional numerical viscous wave flume." Journal of waterway, port, coastal, and ocean engineering, vol. 130, pp. 143-153, 2004.
[14]. M. Elangovan. "Simulation of irregular waves by CFD." World Academy of Science, Engineering and Technology , vol. 55 ,2011.
[15]. W. Finnegan, and J. Goggins. "Numerical simulation of linear water waves and wave–structure interaction." Ocean Engineering, vol.43, pp. 23-31, 2013.
[16]. G. M. Gesteira , D. Cerqueiro, C. Crespo, & R. A. Dalrymple. "Green water overtopping analyzed with a SPH model." Ocean Engineering, vol. 32, pp.223-238, 2005.
[17]. D. G. Goring. "Tsunamis--the propagation of long waves onto a shelf." Diss. California Institute of Technology, 1978.
[18]. S. T. Grilli, and I. A. Svendsen. "Corner problems and global accuracy in the boundary element solution of nonlinear wave flows." Engineering Analysis with Boundary Elements, vol.7, pp. 178-195, 1990.
[19]. S. T Grilli, and P. Watts. "Modeling of waves generated by a moving submerged body. Applications to underwater landslides." Engineering Analysis with boundary elements, vol.23, pp. 645-656, 1999.
[20]. S. T Grilli, S. Vogelmann, and P. Watts. "Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides." Engineering Analysis with Boundary Elements, vol. 26, pp. 301-313, 2002.
[21]. T. Ha, P. Lin, and Y. S. Cho. "Generation of 3D regular and irregular waves using Navier–Stokes equations mode l with an internal wave maker." Coastal Engineering, vol. 76, pp. 55-67, 2013.
[22]. Z. Hafsia, et al. "Internal inlet for wave generation and absorption treatment." Coastal Engineering, vol. 56, pp. 951-959, 2009.
[23]. J. Havn. "Wave loads on underwater protection covers." , 2011.
[24]. P. Higuera, J. L. Lara, and I. J. Losada. "Three-dimensional interaction of waves and porous coastal structures using OpenFOAM®. Part I: formulation and validation." Coastal Engineering, vol.83, pp. 243-258,2014.
[25]. M. Horko. "CFD Optimisation of an Oscillating Water Column Wave Energy Converter." University of Western Australia, 2008.
[26]. C. J. Huang, and C. M. Dong. "Propagation of water waves over rigid rippled beds." Journal of waterway, port, coastal, and ocean engineering, vol. 128, pp. 190-201, 2002.
[27]. C. J. Huang, and C. M. Dong. "On the interaction of a solitary wave and a submerged dike." Coastal Engineering, vol. 43, pp. 265-286, 2001.
[28]. C. J. Huang, E. C. Zhang, and J. F. Lee. "Numerical simulation of nonlinear viscous wavefields generated by piston-type wavemaker." Journal of Engineering Mechanics, vol.124, pp. 1110-1120, 1998.
[29]. N. G. Jacobsen, D. R. Fuhrman, and J. Fredsøe. "A wave generation toolboX for the open‐source CFD library: OpenFoam®." International Journal for Numerical Methods in Fluids, vol.70, pp. 1073-1088, 2012.
[30]. W. P. Jones, and B. E. Launder. "The prediction of laminarization with a two-equation model of turbulence." International journal of heat and mass transfer, vol.15, pp. 301-314, 1972.
[31]. M. W. Kim , W. Koo, and S. Y. Hong. "Numerical analysis of various artificial damping schemes in a three-dimensional numerical wave tank." Ocean Engineering, vol.75, pp. 165-173, 2014.
[32]. A. Lal, and M. Elangovan. "CFD simulation and validation of flap type wave-maker." World Academy of Science, Engineering and Technology, vol. 46, pp. 76-82, 2008.
[33]. R. J. Lambert. "Development of a numerical wave tank using openfoam." , 2012.
[34]. J. Larsen , and H. Dancy. "Open boundaries in short wave simulations—a new approach." Coastal Engineering, vol. 7, pp. 285-297, 1983.
[35]. B. E. Launder, and B. I. Sharma. "Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc." Letters in heat and mass transfer, vol. 1, pp. 131-137, 1974.
[36]. C. Lee, Y. S. Cho, and K. Yum. "Internal generation of waves for eXtended Boussinesq equations." Coastal Engineering, vol.42, pp. 155-162, 2001.
[37]. C. Lee, and K. D. Suh. "Internal generation of waves for time-dependent mild-slope equations." Coastal Engineering, vol.34, pp. 35-57, 1998.
[38]. M. Y. Lin, et al. "Direct numerical simulation of wind-wave generation processes." Journal of Fluid Mechanics, vol. 616, pp.1-30, 2008.
[39]. P. Lin, and P. L. F. Liu. "Internal wave-maker for Navier-Stokes equations models." Journal of waterway, port, coastal, and ocean engineering, vol.125, pp. 207-215, 1999.
[40]. P. Lin, and P. L. F. Liu. "A numerical study of breaking waves in the surf zone." Journal of fluid mechanic, vol. 359, pp. 239-264, 1998.
[41]. H. W. Liu," Numerical modelling of the propagation of ocean waves." Diss. School of Mathematics and Applied Statistics-Faculty of Informatics, University of Wollongong, 2001.
[42]. T. L. Liu, and Z. M. Guo. "Analysis of wave spectrum for submerged bodies moving near the free surface." Ocean Engineering, vol. 58, pp. 239-251, 2013.
[43]. S. Ma, and H. Mahfuz. "Finite element simulation of composite ship structures with fluid structure interaction." Ocean Engineering, vol. 52, pp. 52-59, 2012.
[44]. R. C. MacCamy, and R. A. Fuchs. Wave forces on piles: a diffraction theory. No. TM-69. CORPS OF ENGINEERS WASHINGTON DC BEACH EROSION BOARD, 1954.
[45]. M. Narayanaswamy, et al. "SPHysics-FUNWAVE hybrid model for coastal wave propagation." Journal of Hydraulic Research, vol. 48, pp. 85-93, 2010.
[46]. D. Z. Ning, et al. "Numerical simulation of non-linear regular and focused waves in an infinite water-depth." Ocean Engineering, vol. 35, pp.887-899, 2008.
[47]. J. C. Park, et al. "Numerical reproduction of fully nonlinear multi-directional waves by a viscous 3D numerical wave tank." Ocean Engineering, vol. 31, pp. 1549-1565, 2004.
[48]. Jr, W. J. Pierson, G. Neumann, and R. W. James. "Practical methods for observing and forecasting ocean waves by means of wave spectra and statistics."No. NOO-HO-PUB-603. NAVAL OCEANOGRAPHIC OFFICE NSTL STATION MS, 1971.
[49]. W. J. Pierson, and L. Moskowitz. "A proposed spectral form for fully developed wind seas based on the similarity theory of SA Kitaigorodskii."Journal of geophysical research, vol. 69, pp. 5181-5190, 1964.
[50]. S. E. Ramberg, and J. M. Niedzwecki. "Horizontal and vertical cylinders in waves." Ocean Engineering, vol. 9, pp. 1-15, 1982.
[51]. H. A. Schäffer, and O. R. Sørensen. "On the internal wave generation in Boussinesq and mild-slope equations." Coastal engineering, vol.53, pp. 319-323, 2006.
[52]. R. S. Shih, C. R. Chou, and W. K. Weng. "Numerical modelling of 3D oblique waves by L-type multiple directional wave generator." The Nineteenth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2009.
[53]. K. D. Suh, et al. "EXperimental verification of horizontal two-dimensional modified mild-slope equation model." Coastal Engineering, vol. 44, pp.1-12, 2001.
[54]. H. J. Tang, and C. C. Huang. "Bragg reflection in a fully nonlinear numerical wave tank based on boundary integral equation method." Ocean Engineering, vol. 35, pp. 1800-1810, 2008.
[55]. T. Peter, and J. D. Rouck. "An active wave generating–absorbing boundary condition for VOF type numerical model." Coastal Engineering, vol. 38,pp. 223-247, 1999.
[56]. C. Ulrich, M. Leonardi, and T. Rung. "Multi-physics SPH simulation of compleX marine-engineering hydrodynamic problems." Ocean Engineering, vol. 64, pp.109-121, 2013.
[57]. G. Wei, J. T. Kirby, and A. Sinha. "Generation of waves in Boussinesq models using a source function method." Coastal Engineering, vol. 36.4, pp. 271-299, 1999.
[58]. N. J. Wu, T. K. Tsay, and Y. Y. Chen. "Generation of stable solitary waves by a piston-type wave maker." Wave Motion, vol. 51.2, pp. 240-255, 2014.
[59]. Z. Yang, et al. "Second-order theory for coupling 2D numerical and physical wave tanks: Derivation, evaluation and eXperimental validation."Coastal Engineering, vol. 71, pp. 37-51, 2013.
[60]. J. M. Zhan, et al. "Numerical simulation of wave transformation incorporating porous media wave absorber." Journal of Hydrodynamics, Ser. B, vol 37, pp. 982-985, 2010.
[61]. J. M. Zhan, et al. "A 3-D model for irregular wave propagation over partly vegetated waters." Ocean Engineering, vol. 75, pp. 138-147, 2014.
[62]. X. T. Zhang, B. C. Khoo, and J. Lou. "Wave propagation in a fully nonlinear numerical wave tank: A desingularized method." Ocean Engineering, vol.33, pp. 2310-2331, 2006.
[63]. Q. Zhao, S.e Armfield, and K. Tanimoto. "Numerical simulation of breaking waves by a multi-scale turbulence model." Coastal Engineering, vol. 51, pp. 53-80, 2004.
[64]. 林俊成, 數值造波水槽研究及海洋載具於波浪中運動之數值模式, 國防科學研究所, 國防大學理工學院, 2012.
[65]. 陳皇鈞,“流體力學”,曉園出版社,1992.
[66]. J. H. Ferziger, and M. Peric. "Computational methods for fluid dynamics." Springer Science & Business Media, 2012.
[67]. J. Boussinesq. "Essai sur la théorie des eauX courantes." Imprimerie nationale, 1877.
[68]. B. E. Launder, and D. B. Spalding. "Lectures in mathematical models of turbulence." , 1972.
[69]. R. DeBar, "Fundamentals of the KRAKEN code." Lawrence Livermore Laboratory, UCIR-760 , 1974.
[70]. C. W. Hirt, and B. D. Nichols. "Volume of fluid (VOF) method for the dynamics of free boundaries." Journal of computational physics, vol. 39, pp. 201-225, 1981.
[71]. H. Schlichting, and K. Gersten." Boundary-layer theory." Springer Science & Business Media, 2003.
[72]. S. V. Patanka, and D. B. Spalding. "A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows."International journal of heat and mass transfer, vol. 15, pp.1787-1806, 1972.
[73]. C. M. Rhie, and W. L. Chow. "Numerical study of the turbulent flow past an airfoil with trailing edge separation." AIAA journal, vol. 21, 1525-1532, 1983.
[74]. 張君名, 黏性數值造波水槽之研究, 第 35 屆海洋工程研討會論文集, 2013.
[75]. R. Reynders. "Numerical study of the hydrodynamic behaviour of a wave energy converter based on overtopping.", 2007.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top