|
1. Freiberg, S. and X.X. Zhu, Polymer microspheres for controlled drug release. Int J Pharm, 2004. 282(1-2): p. 1-18. 2. Chen, F.M., M. Zhang, and Z.F. Wu, Toward delivery of multiple growth factors in tissue engineering. Biomaterials, 2010. 31(24): p. 6279-308. 3. Wan, F. and M. Yang, Design of PLGA-based depot delivery systems for biopharmaceuticals prepared by spray drying. Int J Pharm, 2016. 498(1-2): p. 82-95. 4. Bock, N., T.R. Dargaville, and M.A. Woodruff, Electrospraying of polymers with therapeutic molecules: State of the art. Progress in Polymer Science, 2012. 37(11): p. 1510-1551. 5. Mou, F., et al., Oppositely charged twin-head electrospray: A general strategy for building Janus particles with controlled structures. Nanoscale, 2013. 5(5): p. 2055-2064. 6. Duft, D., et al., Coulomb fission: Rayleigh jets from levitated microdroplets. Nature, 2003. 421(6919): p. 128. 7. Loscertales, G., et al., Micro/Nano Encapsulation via Electrified Coaxial Liquid Jets. 2002. 8. Xie, J., et al., Electrohydrodynamic atomization: A two-decade effort to produce and process micro-/nanoparticulate materials. Chem Eng Sci, 2015. 125: p. 32-57. 9. Mehta, P., et al., Pharmaceutical and biomaterial engineering via electrohydrodynamic atomization technologies. Drug Discov Today, 2016. 10. Jaworek, A. and A.T. Sobczyk, Electrospraying route to nanotechnology: An overview. Journal of Electrostatics, 2008. 66(3-4): p. 197-219. 11. Enayati, M., et al., Electrohydrodynamic preparation of particles, capsules and bubbles for biomedical engineering applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011. 382(1-3): p. 154-164. 12. Xie, J., et al., Electrohydrodynamic atomization for biodegradable polymeric particle production. J Colloid Interface Sci, 2006. 302(1): p. 103-12. 13. Chen, R.R. and D.J. Mooney, Polymeric-growth-factor-delivery-strategies-for-tissue-engineering. 2003. 14. Xu, Y. and M.A. Hanna, Electrospray encapsulation of water-soluble protein with polylactide. Effects of formulations on morphology, encapsulation efficiency and release profile of particles. Int J Pharm, 2006. 320(1-2): p. 30-6. 15. Gao, Y., et al., Morphology control of electrosprayed core–shell particles via collection media variation. Materials Letters, 2015. 146: p. 59-64. 16. Nguyen, D.N., C. Clasen, and G. Van den Mooter, Pharmaceutical Applications of Electrospraying. J Pharm Sci, 2016. 105(9): p. 2601-20. 17. Hong, Y., et al., Electrohydrodynamic atomization of quasi-monodisperse drug-loaded spherical/wrinkled microparticles. Journal of Aerosol Science, 2008. 39(6): p. 525-536. 18. Yao, J., et al., Characterization of electrospraying process for polymeric particle fabrication. Journal of Aerosol Science, 2008. 39(11): p. 987-1002. 19. PARETA, R., et al., Electrohydrodynamic atomization of protein (bovine serum albumin). 2005. 20. Davoodi, P., et al., Coaxial electrohydrodynamic atomization: microparticles for drug delivery applications. J Control Release, 2015. 205: p. 70-82. 21. Huang, L.Y., et al., Sustained release of ethyl cellulose micro-particulate drug delivery systems prepared using electrospraying. Journal of Materials Science, 2012. 47(3): p. 1372-1377. 22. Hartman, R.P.A., et al., JET BREAK-UP IN ELECTROHYDRODYNAMIC ATOMIZATION IN THE CONE-JET MODE. 1999). 23. Xie, J., et al., Encapsulation of protein drugs in biodegradable microparticles by co-axial electrospray. J Colloid Interface Sci, 2008. 317(2): p. 469-76. 24. Hwang, Y.K., U. Jeong, and E.C. Cho, Production of Uniform-Sized Polymer Core−Shell Microcapsules by Coaxial Electrospraying. 2007. 25. Bock, N., et al., Electrospraying, a Reproducible Method for Production of Polymeric Microspheres for Biomedical Applications. Polymers, 2011. 3(4): p. 131-149. 26. Arya, N., et al., Electrospraying: A facile technique for synthesis of chitosan-based micro/nanospheres for drug delivery applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009. 88(1): p. 17-31. 27. Bock, N., et al., Electrospraying, a reproducible method for production of polymeric microspheres for biomedical applications. Polymers, 2011. 3(1): p. 131-149. 28. 劉士榮,高宜娟, 生醫材料. 滄海書局,前言頁i,民國九十九年八月初版一刷. 29. Sharma, S., et al., PLGA-based nanoparticles: A new paradigm in biomedical applications. TrAC Trends in Analytical Chemistry, 2016. 80: p. 30-40. 30. Taluja, A., Y.S. Youn, and Y.H. Bae, Novel approaches in microparticulate PLGA delivery systems encapsulating proteins. Journal of Materials Chemistry, 2007. 17(38): p. 4002-4014. 31. Wickline, S.A., et al., Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. Journal of Magnetic Resonance Imaging, 2007. 25(4): p. 667-680. 32. SIGMA-ALDRICH, http://www.sigmaaldrich.com/taiwan.html. 2017. 33. Harwood, V.J., et al., Vancomycin-Resistant Enterococcus spp. Isolated from Wastewater and Chicken Feces in the United States. Applied and Environmental Microbiology, 2001. 67(10): p. 4930-4933. 34. Voss, A., et al., Methicillin-resistant Staphylococcus aureus in Pig Farming. 2005. 35. Levine, D.P., Vancomycin_ A History. 2006. 36. Hwang, D., et al., Vancomycin dosing and target attainment in children. J Microbiol Immunol Infect, 2015. 37. Nie, H., Y. Fu, and C.H. Wang, Paclitaxel and suramin-loaded core/shell microspheres in the treatment of brain tumors. Biomaterials, 2010. 31(33): p. 8732-40. 38. Zamani, M., et al., Controlled delivery of stromal derived factor-1alpha from poly lactic-co-glycolic acid core-shell particles to recruit mesenchymal stem cells for cardiac regeneration. J Colloid Interface Sci, 2015. 451: p. 144-52.
|