跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 19:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳尚林
研究生(外文):Wu, Shang-Lin
論文名稱:腦機系統:從訊號量測電路系統設計到計算智能方法及其應用
論文名稱(外文):Brain Computer-Interface System: from Signal Measurement Circuit System Design to Computational Intelligence Method and its Application
指導教授:林進燈林進燈引用關係陳鴻祺陳鴻祺引用關係
指導教授(外文):Lin, Chin-TengChen, Hung-Chi
口試委員:林進燈陳鴻祺蘇東平楊谷洋廖倫德金榮泰
口試委員(外文):Lin, Chin-TengChen, Hung-ChiSu, Tung-PingYoung, Kuu-YoungLiao, Lun-DeKing, Jung-Tai
口試日期:2017-07-27
學位類別:博士
校院名稱:國立交通大學
系所名稱:電控工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:101
中文關鍵詞:腦機系統腦電圖模糊類神經網路信息融合眼電圖
外文關鍵詞:brain-computer interfaceselectroencephalographyfuzzy neural networksinformation fusionelectrooculography
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
神經科學、傳感器技術和高效信號處理演算法的顯著進步,大大促進了從實驗室導向的神經科學研究轉換至實際應用。腦機系統(BCI)代表將大腦信號轉化為可操作決策的主要步驟,並且主要由訊號處理和訊號分析組成引導使用者和系統之間的通信。本文介紹電路設計和幾種目前的類神經網路技術與計算智能方法應用於基於腦波之腦機系統。在前端訊號處理方面,新型可攜式腦電圖裝置搭配乾式電極作為傳統腦機系統搭配濕電極和其龐大尺寸的替代物。同時,在後端訊號分析方面,引入模糊類神經網路和信息融合技術來分別解決複雜腦網路描述和決策融合的技術問題。例如,信息融合技術已被用於處理在真實世界環境中運動想像應用的個體差異問題。本論文也介紹了使用一新潁眼電圖(EOG)信號分類方法的腦機系統,提供了另一種人與機器之間的通信方式。隨著不斷改進的發展一方便的方法記錄大腦信號與提取關於意圖的知識,腦機系統技術被設想為在不久的將來引起廣泛的實際應用。
Significant advances in neuroscience, sensor technologies, and efficient signal processing algorithms have greatly facilitated the transition from laboratory-oriented neuroscience research to practical applications. Brain-computer interfaces (BCIs) represent major strides in translating brain signals into actionable decisions and primarily consist of front-end signal processing and back-end signal analyzing that guide the communications between users and systems. This dissertation presents several current neuro network technologies and computational intelligence methods applied to EEG-based BCIs. In the front-end signal processing aspect, novel portable EEG devices featuring dry electrodes are introduced as substitutes for traditional BCIs with wet electrodes and its bulky size. Meanwhile, in the back-end signal analyzing aspect, fuzzy neural networks and information fusion techniques are introduced to address the technical issues of complex brain network description, and decision fusion, respectively. For instance, information fusion technique has been utilized to attack the individual differences problem of motor imagery applications in the real-world environment. This dissertation also presents BCIs system with a novel classification method that uses electrooculography (EOG) signals, which provide another communication way between humans and machine. With continuous improvements in the development of a convenient approach to record brain signals and extract knowledge regarding intentions, BCI techniques are envisioned to lead to a wide range of real-life applications in the near future.
摘要 i
Abstract ii
誌謝 iii
Table of Content v
List of Tables x
List of Figures xi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Statement of the Problem 2
1.3 Aim of the Study and Organization of the Dissertation 4
Chapter 2 EEG-BASED NEUROIMAGING TECHNOLOGY FOR BRAIN-COMPUTER INTERFACES 6
2.1 System Architecture 6
2.2 EEG Signal Processing 7
2.3 Circuit Design 8
2.3.1 Preamplifier 8
2.3.2 Analog to Digital Converter 10
2.3.3 Micro Controller Unit 10
2.3.4 Wireless Transmission Unit 11
2.3.5 Power Supply 11
2.4 Results 12
2.4.1 Verification 12
2.4.2 Performance 15
2.5 Discussion 19
2.6 Conclusions 19
Chapter 3 EEG-BASED BRAIN-COMPUTER INTERFACE IN PREDICTING DRIVING FATIGUE USING FUZZY NEURAL NETWORK 21
3.1 Background 21
3.2 Structure of Recurrent Self-Evolving Fuzzy Neural Network 23
3.2.1 Structure Learning 26
3.2.2 Parameter Learning 27
3.3 Experiment Setup 29
3.3.1 Virtual-reality-based Highway Experimental Environment 29
3.3.2 Participants 30
3.3.3 Driving Fatigue Paradigm 31
3.4 Experiment Results and Discussion 33
3.4.1 Results 33
3.4.2 Discussion 36
3.5 Conclusions 38
Chapter 4 USING MOTOR IMAGERY BASED BRAIN-COMPUTER INTERFACE WITH FUZZY FUSION SIGNAL PROCESSING STRAGERY 40
4.1 Background 40
4.2 Structure of Fuzzy Fusion 43
4.3 EEG Processing and Categorization 44
4.3.1 Common Spatial Pattern and Linear Discriminant Analysis 44
4.3.2 Fuzzy Integral 45
4.3.3 Particle Swarm Optimization 47
4.4 Experiment Setup 49
4.4.1 Experimental Procedure 50
4.5 Results and Discussion 51
4.5.1 Fuzzy Fusion Performance 51
4.5.2 The Proposed Online BCI System and Its Application 53
4.5.3 Reliability Test 55
4.6 Conclusions 55
Chapter 5 Controlling a Brain-Computer Interface System with a Novel Classification Method that uses Electrooculography Signals 57
5.1 Background 57
5.2 System Architecture 60
5.3 EOG Signal Processing 61
5.3.1 Normalization Factor Calibration 62
5.3.2 EOG Signal Preprocessing 63
5.3.3 Feature Extraction 65
5.3.4 EOG Signal Classifiers 65
5.4 Results 67
5.4.1 Subjects and Experiments 67
5.4.2 Experimental Procedure 68
5.4.3 Performance of the Eye movement Feature and Movement Classification 69
5.5 Discussions 74
5.5.1 Error Movement in Oblique Direction 74
5.5.2 Eye Movements in the Vertical Direction 76
5.6 Conclusions 76
Chapter 5 Summary and Future Works 78
Reference 79
Publication 97
[1] S. Machado, F. Araujo, F. Paes, B. Velasques, M. Cunha, H. Budde, et al., "EEG-based brain-computer interfaces: an overview of basic concepts and clinical applications in neurorehabilitation," Rev. Neurosci., vol. 21, pp. 451-68, Dec. 2010.
[2] P. Brunner, L. Bianchi, C. Guger, F. Cincotti, and G. Schalk, "Current trends in hardware and software for brain-computer interfaces (BCIs)," J. Neural Eng., vol. 8, pp. 1-7, Apr. 2011.
[3] S. Marcel and J. D. R. Millan, "Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, pp. 743-752, Apr. 2007.
[4] R. Palaniappan and D. P. Mandic, "Biometrics from brain electrical activity: a machine learning approach," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, pp. 738-742, Apr. 2007.
[5] R. Sitaram, S. Lee, S. Ruiz, M. Rana, R. Veit, and N. Birbaumer, "Real-time support vector classification and feedback of multiple emotional brain states," NeuroImage, vol. 56, pp. 753-765, May 2011.
[6] L.-D. Liao, C.-Y. Chen, I.-J. Wang, S.-F. Chen, S.-Y. Li, B.-W. Chen, et al., "Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors," J. Neuroeng. Rehabil., vol. 9, pp. 1-11, Jan. 2012.
[7] C. Papadelis, Z. Chen, C. Kourtidou-Papadeli, P. D. Bamidis, I. Chouvarda, E. Bekiaris, et al., "Monitoring sleepiness with on-board electrophysiological recordings for preventing sleep-deprived traffic accidents," Clin. Neurophysiol., vol. 118, pp. 1906-1922, Sep. 2007.
[8] R. N. Khushaba, S. Kodagoda, S. Lal, and G. Dissanayake, "Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm," IEEE Trans. Biomed. Eng., vol. 58, pp. 121-131, Sep. 2011.
[9] C. T. Lin, L. W. Ko, and T. K. Shen, "Computational intelligent brain computer interaction and its applications on driving cognition," IEEE Comput. Intell. M., vol. 4, pp. 32-46, Nov. 2009.
[10] K. J. Friston, S. Williams, R. Howard, R. S. Frackowiak, and R. Turner, "Movement-related effects in fMRI time-series," Magn. Reson. Med., vol. 35, pp. 346-355, Mar. 1996.
[11] S. A. Nehmeh and Y. E. Erdi, "Respiratory motion in positron emission tomography/computed tomography: A review," Semin. Nuclear Med., vol. 38, pp. 167-76, May 2008.
[12] L.-D. Liao, C.-T. Lin, K. McDowell, A. E. Wickenden, K. Gramann, T.-P. Jung, et al., "Biosensor technologies for augmented brain-computer interfaces in the next decades," Proc. IEEE, vol. 100, pp. 1553-1566, Mar. 2012.
[13] J. N. Knight, "Signal fraction analysis and artifact removal in EEG," Colorado State University, 2003.
[14] W. De Clercq, A. Vergult, B. Vanrumste, W. Van Paesschen, and S. Van Huffel, "Canonical correlation analysis applied to remove muscle artifacts from the electroencephalogram," IEEE Trans. Biomed. Eng., vol. 53, pp. 2583-2587, Nov. 2006.
[15] A. J. Bell and T. J. Sejnowski, "An information-maximization approach to blind separation and blind deconvolution," Neural Comput., vol. 7, pp. 1129-59, Nov. 1995.
[16] S. Makeig, T. P. Jung, A. J. Bell, D. Ghahremani, and T. J. Sejnowski, "Blind separation of auditory event-related brain responses into independent components," Proc. Natl. Acad. Sci., vol. 94, pp. 10979–10984, Sep. 1997.
[17] T.-P. Jung, S. Makeig, M. J. McKeown, A. J. Bell, T. W. Lee, and T. J. Sejnowski, "Imaging brain dynamics using independent component analysis," Proc. IEEE, vol. 89, pp. 1107-1122, July 2001.
[18] E. W. Sellers, D. J. Krusienski, D. J. McFarland, T. M. Vaughan, and J. R. Wolpaw, "A P300 event-related potential brain-computer interface (BCI): The effects of matrix size and inter stimulus interval on performance," Biol. Psychol., vol. 73, pp. 242-52, Oct. 2006.
[19] D. C. Van Essen, S. M. Smith, D. M. Barch, T. E. Behrens, E. Yacoub, K. Ugurbil, et al., "The WU-Minn human connectome project: An overview," NeuroImage, vol. 80, pp. 62-79, Oct. 2013.
[20] K. J. Friston, "Functional and effective connectivity in neuroimaging: A synthesis," Hum. Brain Mapp., vol. 2, pp. 56-78, 1994.
[21] S. Amiri, R. Fazel-Rezai, and V. Asadpour, "A review of hybrid brain-computer interface systems," Adv. Hum.-Comput. Interact., vol. 2013, p. 8, Jan. 2013.
[22] I. Pelletier, H. C. Sauerwein, F. Lepore, D. Saint-Amour, and M. Lassonde, "Non-invasive alternatives to the Wada test in the presurgical evaluation of language and memory functions in epilepsy patients," Epileptic Disorders, vol. 9, pp. 111-126, Jun. 2007.
[23] M. C. Shirley, E. W. Tomás, and M. M. Charles, "Brain–computer interface using a simplified functional near-infrared spectroscopy system," J Neural Eng, vol. 4, pp. 219-226, Sep. 2007.
[24] E. Yin, T. Zeyl, R. Saab, D. Hu, Z. Zhou, and T. Chau, "An Auditory-Tactile Visual Saccade-Independent P300 Brain–Computer Interface," Int J Neural Syst, vol. 26, pp. 1650001-1650016, Feb. 2016.
[25] E. Yin, T. Zeyl, R. Saab, T. Chau, D. Hu, and Z. Zhou, "A Hybrid Brain-Computer Interface Based on the Fusion of P300 and SSVEP Scores," IEEE Trans. Neural Syst. Rehabil. Eng, vol. 23, pp. 693-701, Jul. 2015.
[26] K. Gramann, J. T. Gwin, D. P. Ferris, K. Oie, T. P. Jung, C. T. Lin, et al., "Cognition in action: imaging brain/body dynamics in mobile humans," Rev Neurosci, vol. 22, pp. 593-608, 2011.
[27] W. O. Tatum, B. A. Dworetzky, and D. L. Schomer, "Artifact and recording concepts in EEG," Journal of Clinical Neurophysiology, vol. 28, pp. 252-63, Jun 2011.
[28] W. O. Tatum, B. A. Dworetzky, W. D. Freeman, and D. L. Schomer, "Artifact: recording EEG in special care units," Journal of Clinical Neurophysiology, vol. 28, pp. 264-77, Jun 2011.
[29] R. B. Paranjape and Z. J. Koles, "Topographic Eeg Mapping Using the 10-20 System," Electroencephalography and Clinical Neurophysiology, vol. 66, pp. P2-P2, Jan 1987.
[30] R. L. Boylestad and L. Nashelsky, Electronic devices and circuit theory, 10th ed. Upper Saddle River, N.J.: Pearson/Prentice Hall, 2009.
[31] D. A. Neamen, Microelectronics : circuit analysis and design, 3rd ed. New York: McGraw-Hill, 2007.
[32] Chin-Teng Lin, Lun-De Liao, Yu-Hang Liu, I-Jan Wang, Bor-Shyh Lin, and Jyh-Yeong Chang, "Novel Dry Polymer Foam Electrodes for Long-Term EEG Measurement," IEEE Transactions on Biomedical Engineering, vol. 58, pp. 1200-1207, 2011.
[33] L.-D. Liao, I. J. Wang, S.-F. Chen, J.-Y. Chang, and C.-T. Lin, "Design, Fabrication and Experimental Validation of a Novel Dry-Contact Sensor for Measuring Electroencephalography Signals without Skin Preparation," Sensors, vol. 11, pp. 5819-5834, 2011.
[34] L. D. Liao, C. T. Lin, K. McDowell, A. E. Wickenden, K. Gramann, T. P. Jung, et al., "Biosensor Technologies for Augmented Brain-Computer Interfaces in the Next Decades," Proceedings of the IEEE, vol. 100, pp. 1553-1566, 2012.
[35] C. T. Lin, S. F. Tsai, and L. W. Ko, "EEG-Based Learning System for Online Motion Sickness Level Estimation in a Dynamic Vehicle Environment," IEEE Transactions on Neural Networks and Learning Systems, vol. 24, pp. 1689-1700, 2013.
[36] F. C. Lin, L. W. Ko, C. H. Chuang, T. P. Su, and C. T. Lin, "Generalized EEG-Based Drowsiness Prediction System by Using a Self-Organizing Neural Fuzzy System," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, pp. 2044-2055, 2012.
[37] N. Acir, I. Oztura, M. Kuntalp, B. Baklan, and C. Guzelis, "Automatic detection of epileptiform events in EEG by a three-stage procedure based on artificial neural networks," IEEE Transactions on Biomedical Engineering, vol. 52, pp. 30-40, 2005.
[38] U. Orhan, M. Hekim, and M. Ozer, "EEG signals classification using the K-means clustering and a multilayer perceptron neural network model," Expert Systems with Applications, vol. 38, pp. 13475-13481, 2011/09/15/ 2011.
[39] S. Ghosh-Dastidar, H. Adeli, and N. Dadmehr, "Principal Component Analysis-Enhanced Cosine Radial Basis Function Neural Network for Robust Epilepsy and Seizure Detection," IEEE Transactions on Biomedical Engineering, vol. 55, pp. 512-518, 2008.
[40] W.-Y. Hsu, "Fuzzy Hopfield neural network clustering for single-trial motor imagery EEG classification," Expert Systems with Applications, vol. 39, pp. 1055-1061, 2012/01/01/ 2012.
[41] D. Coyle, G. Prasad, and T. M. McGinnity, "Faster Self-Organizing Fuzzy Neural Network Training and a Hyperparameter Analysis for a Brain–Computer Interface," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, pp. 1458-1471, 2009.
[42] C. T. Lin, L. W. Ko, I. F. Chung, T. Y. Huang, Y. C. Chen, T. P. Jung, et al., "Adaptive EEG-Based Alertness Estimation System by Using ICA-Based Fuzzy Neural Networks," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 53, pp. 2469-2476, 2006.
[43] A. Erfanian and B. Mahmoudi, "Real-time ocular artifact suppression using recurrent neural network for electro-encephalogram based brain-computer interface," Medical and Biological Engineering and Computing, vol. 43, pp. 296-305, April 01 2005.
[44] E. D. Übeyli, "Analysis of EEG signals by implementing eigenvector methods/recurrent neural networks," Digital Signal Processing, vol. 19, pp. 134-143, 2009/01/01/ 2009.
[45] P. R. Davidson, R. D. Jones, and M. T. R. Peiris, "Detecting Behavioral Microsleeps using EEG and LSTM Recurrent Neural Networks," in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, 2005, pp. 5754-5757.
[46] C.-F. Juang, Y.-Y. Lin, and C.-C. Tu, "A recurrent self-evolving fuzzy neural network with local feedbacks and its application to dynamic system processing," Fuzzy Sets and Systems, vol. 161, pp. 2552-2568, 2010/10/01/ 2010.
[47] C.-F. Juang, A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms vol. 10, 2002.
[48] N. F. Güler, E. D. Übeyli, and İ. Güler, "Recurrent neural networks employing Lyapunov exponents for EEG signals classification," Expert Systems with Applications, vol. 29, pp. 506-514, 2005/10/01/ 2005.
[49] Z. Li, M. Hayashibe, C. Fattal, and D. Guiraud, "Muscle Fatigue Tracking with Evoked EMG via Recurrent Neural Network: Toward Personalized Neuroprosthetics," IEEE Computational Intelligence Magazine, vol. 9, pp. 38-46, 2014.
[50] L. Cheng-Jian and C. Cheng-Chung, "Prediction and identification using wavelet-based recurrent fuzzy neural networks," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 34, pp. 2144-2154, 2004.
[51] R.-S. Huang, T.-P. Jung, A. Delorme, and S. Makeig, "Tonic and phasic electroencephalographic dynamics during continuous compensatory tracking," NeuroImage, vol. 39, pp. 1896-1909, 2008/02/15/ 2008.
[52] C.-H. Chuang, L.-W. Ko, T.-P. Jung, and C.-T. Lin, "Kinesthesia in a sustained-attention driving task," NeuroImage, vol. 91, pp. 187-202, 2014/05/01/ 2014.
[53] B. Blankertz, G. Dornhege, M. Krauledat, K. R. Muller, V. Kunzmann, F. Losch, et al., "The Berlin brain-computer interface: EEG-based communication without subject training," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, pp. 147-152, 2006.
[54] J. Hlinka, C. Alexakis, A. Diukova, P. F. Liddle, and D. P. Auer, "Slow EEG pattern predicts reduced intrinsic functional connectivity in the default mode network: An inter-subject analysis," NeuroImage, vol. 53, pp. 239-246, 2010/10/15/ 2010.
[55] G. E. Fabiani, D. J. McFarland, J. R. Wolpaw, and G. Pfurtscheller, "Conversion of EEG activity into cursor movement by a brain-computer interface (BCI)," IEEE Trans. Neural. Syst. Rehabil. Eng., vol. 12, pp. 331-338, 2004.
[56] S. Ferdowsi, S. Sanei, V. Abolghasemi, J. Nottage, and O. O'Daly, "Removing ballistocardiogram artifact from EEG using short- and long-term linear predictor," IEEE Trans. Biomed. Eng., vol. 60, pp. 1900-1911, 2013.
[57] M. Bamdad, H. Zarshenas, and M. A. Auais, "Application of BCI systems in neurorehabilitation: a scoping review," Disabil Rehabil Assist Technol, vol. 10, pp. 355-364, 2015.
[58] T. Mulder, "Motor imagery and action observation: cognitive tools for rehabilitation," J. Neural Transm., vol. 114, pp. 1265-1278, 2007.
[59] S. S. Chung, L. K. McEvoy, M. E. Smith, A. Gevins, K. Meador, and K. D. Laxer, "Task-related EEG and ERP changes without performance impairment following a single dose of phenytoin," Clin. Neurophysiol., vol. 113, pp. 806-814, 2002.
[60] J. M. Cano-Izquierdo, J. Ibarrola, and M. Almonacid, "Improving motor imagery classification with a new BCI design using neuro-fuzzy S-dFasArt," IEEE Trans. Neural. Syst. Rehabil. Eng., vol. 20, pp. 2-7, 2012.
[61] Y. H. Liu, C. T. Wu, Y. H. Kao, and Y. T. Chen, "Single-trial EEG-based emotion recognition using kernel Eigen-emotion pattern and adaptive support vector machine," in Conf. Proc. IEEE Eng. Med. Biol. Soc., Osaka, 2013, pp. 4306-4309.
[62] V. Bostanov, "BCI Competition 2003--Data sets Ib and IIb: feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram," IEEE Trans. Biomed. Eng., vol. 51, pp. 1057-1061, 2004.
[63] W. Y. Hsu and Y. N. Sun, "EEG-based motor imagery analysis using weighted wavelet transform features," J. Neurosci. Meth., vol. 176, pp. 310-318, 2009.
[64] B. Obermaier, C. Neuper, C. Guger, and G. Pfurtscheller, "Information transfer rate in a five-classes brain-computer interface," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 9, pp. 283-288, 2001.
[65] D. P. Burke, S. P. Kelly, P. de Chazal, R. B. Reilly, and C. Finucane, "A parametric feature extraction and classification strategy for brain-computer interfacing," IEEE Trans. Neural. Syst. Rehabil. Eng., vol. 13, pp. 12-17, 2005.
[66] R. Zhang, Y. Li, Y. Yan, H. Zhang, S. Wu, T. Yu, et al., "Control of a Wheelchair in an Indoor Environment Based on a Brain-Computer Interface and Automated Navigation," IEEE Trans Neural Syst Rehabil Eng, pp. 1-12, 2015.
[67] P. Wei, W. He, Y. Zhou, and L. Wang, "Performance of motor imagery brain-computer interface based on anodal transcranial direct current stimulation modulation," IEEE Trans Neural Syst Rehabil Eng, vol. 21, pp. 404-415, 2013.
[68] Q. Novi, G. Cuntai, T. H. Dat, and X. Ping, "Sub-band Common Spatial Pattern (SBCSP) for Brain-Computer Interface," in 2007 International IEEE/EMBS Conference on Neural Engineering, 2007, pp. 204-207.
[69] R. Zhang, P. Xu, L. Guo, Y. Zhang, P. Li, and D. Yao, "Z-score linear discriminant analysis for EEG based brain-computer interfaces," PLoS One, vol. 8, pp. 1-7, 2013.
[70] G. Salimi-Khorshidi, A. M. Nasrabadi, and M. H. Golpayegani, "Fusion of classic P300 detection methods’ inferences in a framework of fuzzy labels," Arti Intell Medi, vol. 44, pp. 247-259, 2008.
[71] X. Luqiang and X. Guangcan, "Study on Power Spectrum Signal Fuzzy Fusion for Motor Imagery," Computer Engineering, vol. 41, pp. 306-309, 2015.
[72] B. S. Yoo and J. H. Kim, "Fuzzy Integral-Based Gaze Control of a Robotic Head for Human Robot Interaction," IEEE Trans Cybern, vol. 45, pp. 1769-1783, 2015.
[73] J. K. Yoo and J. H. Kim, "Fuzzy integral-based gaze control architecture incorporated with modified-univector field-based navigation for humanoid robots," IEEE Trans Syst Man Cybern B Cybern, vol. 42, pp. 125-139, 2012.
[74] T. Murofushi and M. Sugeno, "A theory of fuzzy measures: Representations, the Choquet integral, and null sets," Journal of Mathematical Analysis and Applications, vol. 159, pp. 532-549, 1991.
[75] F. Cavrini, L. Bianchi, L. R. Quitadamo, and G. Saggio, "A Fuzzy Integral Ensemble Method in Visual P300 Brain-Computer Interface," J Math Anal Appl, vol. 2016, p. 9, 2016.
[76] Z. Shoaie Shirehjini, S. Bagheri Shouraki, and M. Esmailee, Variant Combination of Multiple Classifiers Methods for Classifying the EEG Signals in Brain-Computer Interface: Springer Berlin Heidelberg, 2009.
[77] M. Grabisch, H. T. Nguyen, and E. A. Walker, Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference vol. 30: Springer Netherlands, 1995.
[78] M. K. Wali, M. Murugappan, and B. Ahmad, "Subtractive fuzzy classifier based driver distraction levels classification using EEG," J Phys Ther Sci, vol. 25, pp. 1055-8, Sep 2013.
[79] J. W. Bang, J. S. Choi, H. Heo, and K. R. Park, "A Fuzzy-Based Fusion Method of Multimodal Sensor-Based Measurements for the Quantitative Evaluation of Eye Fatigue on 3D Displays," Sensors (Basel), vol. 15, pp. 10825-51, 2015.
[80] Q. Gao, L. Liu, G. Feng, and Y. Wang, "Universal fuzzy integral sliding-mode controllers for stochastic nonlinear systems," IEEE Trans Cybern, vol. 44, pp. 2658-2669, 2014.
[81] M. F. Anderson, D. T. Anderson, and D. J. Wescott, "Estimation of adult skeletal age-at-death using the Sugeno fuzzy integral," Am. J. Phys. Anthropol., vol. 142, pp. 30-41, 2010.
[82] H. Agahi, R. Mesiar, and Y. Ouyang, "On some advanced type inequalities for Sugeno integral and T-(S-)evaluators," Info. Sci., vol. 190, pp. 64-75, 2012.
[83] M. Singh, V. K. Madasu, S. Srivastava, and M. Hanmandlu, "Choquet fuzzy integral based verification of handwritten signatures," J. Intell. Fuzzy Syst., vol. 24, pp. 145-161, 2013.
[84] C. Liu, W.-B. Du, and W.-X. Wang, "Particle Swarm Optimization with Scale-Free Interactions," PLoS ONE, vol. 9, pp. 1-8, 2014.
[85] K. Yu, K. Shen, S. Shao, W. C. Ng, and X. Li, "Bilinear common spatial pattern for single-trial ERP-based rapid serial visual presentation triage," J. Neural Eng, vol. 9, pp. 1-8, 2012.
[86] H. P. Hsu and J. S. Shih, "Multi-channel surface acoustic wave sensors based on principal component analysis (PCA) and linear discriminate analysis (LDA) for organic vapors," J. Chin. Chem. Soc., vol. 53, pp. 815-824, 2006.
[87] P. J. Facchini and B. St-Pierre, "Synthesis and trafficking of alkaloid biosynthetic enzymes," Curr Opin Plant Biol, vol. 8, pp. 657-66, Dec 2005.
[88] M. Almonacid, J. Ibarrola, and J. M. Cano-Izquierdo, "Voting Strategy to Enhance Multimodel EEG-Based Classifier Systems for Motor Imagery BCI," Systems Journal, IEEE, vol. PP, pp. 1-7, 2014.
[89] F. Pagnini, "Psychological wellbeing and quality of life in amyotrophic lateral sclerosis: A review," International Journal of Psychology, Jun 25 2012.
[90] D. Kruger, "Amyotrophic lateral sclerosis," Journal of the American Academy of Physician Assistants, vol. 25, pp. 53-4, Jul 2012.
[91] S. Barattelli, L. Sichelschmidt, and G. Rickheit, "Eye-movements as an input in human computer interaction: exploiting natural behaviour," in Industrial Electronics Society, 1998. IECON '98. Proceedings of the 24th Annual Conference of the IEEE, 1998, pp. 2000-2005 vol.4.
[92] J. B. Hiley, A. H. Redekopp, and R. Fazel-Rezai, "A low cost human computer interface based on eye tracking," Conference Proceedings - IEEE Engineering in Medicine and Biology Society, vol. 1, pp. 3226-9, 2006.
[93] M. W. Shen, C. Z. Feng, and H. Su, "Spatial and temporal characteristic of eye movement in human-computer interface design," Space Medicine & Medical Engineering (Beijing), vol. 16, pp. 304-6, Aug 2003.
[94] K. U. Schmitt, M. H. Muser, C. Lanz, F. Walz, and U. Schwarz, "Comparing eye movements recorded by search coil and infrared eye tracking," Journal of Clinical Monitoring and Computing, vol. 21, pp. 49-53, Feb 2007.
[95] T. M. W. Johns, Andrew, Chapman, Robert J., Crowley, Kate E. and Michael, Natalie, "Monitoring eye and eyelid movements by infrared reflectance oculography to measure drowsiness in drivers," Somnologie : Schlafforschung und Schlafmedizin, vol. 11, pp. 234-242, 2007.
[96] H. D. Crane and C. M. Steele, "Generation-V dual-Purkinje-image eyetracker," Applied Optics, vol. 24, pp. 527-537, 1985.
[97] A. Sprenger, B. Neppert, S. Koster, S. Gais, D. Kompf, C. Helmchen, et al., "Long-term eye movement recordings with a scleral search coil-eyelid protection device allows new applications," Journal of Neuroscience Methods, vol. 170, pp. 305-9, May 30 2008.
[98] M. Lappe-Osthege, S. Talamo, C. Helmchen, and A. Sprenger, "Overestimation of saccadic peak velocity recorded by electro-oculography compared to video-oculography and scleral search coil," Clinical Neurophysiology, vol. 121, pp. 1786-7, Oct 2010.
[99] R. Barea, L. Boquete, J. M. Rodriguez-Ascariz, S. Ortega, and E. Lopez, "Sensory system for implementing a human-computer interface based on electrooculography," Sensors (Basel), vol. 11, pp. 310-28, 2011.
[100] W. Heide, E. Koenig, P. Trillenberg, D. Kompf, and D. S. Zee, "Electrooculography: technical standards and applications. The International Federation of Clinical Neurophysiology," Electroencephalography and Clinical Neurophysiology Supplement, vol. 52, pp. 223-40, 1999.
[101] P. M. Walter, W. Sickel, K. Gothe, and R. Brunner, "Recording and analysis of the electrooculography using a personal computer. Initial experiences with normal probands and patients with diseases of the posterior eye segment and intraocular foreign bodies," Klin Monbl Augenheilkd, vol. 195, pp. 261-7, Oct 1989.
[102] V. Ciotti, "20 Years of HCI," Healthcare Informatics, vol. 27, p. 64, Feb 2010.
[103] J. Gomez-Gil, I. San-Jose-Gonzalez, L. F. Nicolas-Alonso, and S. Alonso-Garcia, "Steering a tractor by means of an EMG-based human-machine interface," Sensors (Basel), vol. 11, pp. 7110-26, 2011.
[104] I. Mohammad Rezazadeh, S. M. Firoozabadi, H. Hu, and S. M. Hashemi Golpayegani, "A novel human--machine interface based on recognition of multi-channel facial bioelectric signals," Australasian Physical and Engineering Sciences in Medicine, vol. 34, pp. 497-513, Dec 2011.
[105] L. Y. Deng, C. L. Hsu, T. C. Lin, J. S. Tuan, and S. M. Chang, "EOG-based Human-Computer Interface system development," Expert Systems with Applications, vol. 37, pp. 3337-3343, Apr 2010.
[106] R. Barea, L. Boquete, M. Mazo, and E. Lpez, "Wheelchair Guidance Strategies Using EOG," Journal of Intelligent and Robotic Systems, vol. 34, pp. 279-299, 2002.
[107] H. S. Dhillon, R. Singla, N. S. Rekhi, and R. Jha, "EOG and EMG based virtual keyboard: A brain-computer interface," in 2nd IEEE International Conference on Computer Science and Information Technology, 2009, pp. 259-262.
[108] J.-C. Chiou, L.-W. Ko, C.-T. Lin, C.-T. Hong, T.-P. Jung, S.-F. Liang, et al., "Using novel MEMS EEG sensors in detecting drowsiness application," in 2006 IEEE Biomedical Circuits and Systems Conference, 2006, pp. 33-36.
[109] J. R. LaCourse and F. C. Hludik, Jr., "An eye movement communication-control system for the disabled," IEEE Transactions on Biomedical Engineering, vol. 37, pp. 1215-1220, 1990.
[110] A. P. Siriwadee Aungsakun, Pornchai Phukpattaranont, and Chusak Limsakul, "Development of Robust EOG-Based Human-Computer Interface Controlled by Eight-Directional Eye Movements," International Journal of Physical Sciences, vol. 7, pp. 2196-2208, Mar 2012.
[111] Y. Punsawad, Y. Wongsawat, and M. Parnichkun, "Hybrid EEG-EOG brain-computer interface system for practical machine control," Conference Proceedings - IEEE Engineering in Medicine and Biology Society, vol. 2010, pp. 1360-3, 2010.
[112] M. Hazrati and A. Erfanian, "An online EEG-based brain-computer interface for controlling hand grasp using an adaptive probabilistic neural network," Medical Engineering and Physics, vol. 32, pp. 730-9, Sep 2010.
[113] T. Ohya and M. Kawasumi, "Development of an Input Operation for the Amyotrophic Lateral Sclerosis Communication Tool Utilizing EOG," Transactions of Japanese Society for Medical and Biological Engineering, vol. 43, pp. 172-178, 2005.
[114] P. Tigges, N. Kathmann, and R. R. Engel, "Identification of input variables for feature based artificial neural networks-saccade detection in EOG recordings," International Journal of Medical Informatics, vol. 45, pp. 175-84, Jul 1997.
[115] S. Hu and G. Zheng, "Driver drowsiness detection with eyelid related parameters by Support Vector Machine," Expert Systems with Applications, vol. 36, pp. 7651-7658, 2009.
[116] C.-L. H. Lawrence Y. Deng, Tzu-Ching Lin, Jui-Sen Tuan and Yung-Hui Chen, "EOG-based signal detection and verification for HCI," in 2009 International Conference on Machine Learning and Cybernetics, 2009, pp. 3342-3348.
[117] K. Keun Kim, Y. Kyu Lim, and K. Suk Park, "Common mode noise cancellation for electrically non-contact ECG measurement system on a chair," 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 6, pp. 5881-3, 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top