跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.102) 您好!臺灣時間:2025/12/04 09:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊逸璇
研究生(外文):Yi-hsuan Yang
論文名稱:反應性微膠顆粒型抗收縮劑、奈米級核殼型橡膠增韌劑及蒙特納石黏土對苯乙烯/不飽和聚酯/特用添加劑三成份系之聚合固化反應動力及玻璃轉移溫度之影響研究
論文名稱(外文):Effects of reactive microgel-based low-profile additives, nano-scale core-shell rubber tougheners, and montmorillonite clay on the cure kinetics and glass transition temperatures for styrene/unsaturated polyester/additive ternary systems
指導教授:黃延吉
指導教授(外文):Yan-jyi Huang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:263
中文關鍵詞: 環動半徑 熱刺激去極化電流 蒙特納石黏土 奈米核殼型橡膠 抗收縮劑反應性微膠顆粒 固化反應動力 不飽和聚酯樹脂 小角度x光散射 玻璃轉移溫度
外文關鍵詞:reactive microgel (RM)low-profile additive (LP
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
本文乃探討添加反應性微膠顆粒型抗收縮劑(LPA)、奈米級核殼型橡膠(CSR)及蒙特納石黏土(MMT),對其ST/UP/Additive三成份系之聚合固化動力及玻璃轉移溫度影響。吾人利用小角度X-ray散射儀(SAXS)測定不飽和聚酯(UP)之稀薄苯乙烯(ST)溶液之散射強度,再利用Guinier Law計算UP之環動半徑(Radius of Gyration),以瞭解UP分子擴散至蒙特納石黏土層間之難易程度。吾人利用微分掃描熱分析儀(DSC)及傅立葉轉換紅外光譜儀(FTIR)測量ST/UP/additive三成份系在聚合固化過程中之反應動力。最後依據Takayanagi機械模式,ST/UP/additive三成份系聚合固化後的樣品,其在各相區之玻璃轉移溫度,吾人亦以熱刺激去極化電流分析儀(TSC)及動態機械測定儀(DMA)測量之。
The effects of reactive microgel (RM) particle type of low-profile additives (LPA), nano-scale core-shell rubber (CSR) tougheners, and montmorillonite clay (MMT) on the cure kinetics and glass transition temperatures for styrene/unsaturated polyester/additive ternary systems have been investigated. The scattering intensity of unsaturated polyester (UP) in dilute styrene solution was measured by the method of small angle X-ray scattering (SAXS), and the radius of gyration of the UP molecule can then be calculated by using the Guinier law. Hence, the ease at which the UP molecule can diffuse into the gallery spacing of the MMT clay can be evaluated. The reaction kinetics for the ST/UP/additive ternary system during the cure was measured by differential scanning calorimetry (DSC)and Fourier transform infrared spectrometry (FTIR). Finally, based on the Takayanagi mechanical models, the glass transition temperature in each region of the cured samples for ST/UP/additive ternary systems has been measured by the method of thermally stimulated currents (TSC) and the method of dynamic mechanical analysis (DMA).
目錄
中文摘要-------------------------------------------------------------------------I
英文摘要-------------------------------------------------------------------------II
誌謝-------------------------------------------------------------------------------III
圖表索引------------------------------------------------------------------------VI
第一章 緒論-----------------------------------------------------------------------1
1-1 高分子複合材---------------------------------------------------------1
1-2 抗收縮劑---------------------------------------------------------------3
1-3 反應性微膠顆粒------------------------------------------------------4
1-4 核殼型(Core-Shell Rubber, CSR)改質不飽和聚酯樹脂--------5
1-5 蒙特納石黏土(Montmorillonite, MMT)及其高分子奈米複合材料---------------------------------------------------------------------6
1-6 研究範疇---------------------------------------------------------------7
第二章 文獻回顧-----------------------------------------------------------------8
2-1不飽和聚酯與苯乙烯之交聯共聚合反應--------------------------8
2-2不飽和聚酯樹脂之反應動力學模式之研究---------------------11
2-3不飽和聚酯樹脂之聚合固化研究---------------------------------16
2-4低收縮不飽和聚酯樹脂之聚合固化研究------------------------17
2-5反應性微膠顆粒型抗收縮劑之效應------------------------------19
2-6核殼型橡膠增韌劑之效應------------------------------------------20
2-7不飽和聚酯樹脂系統之玻璃轉移溫度之研究---------------------23
2-8蒙特納石黏土-高分子奈米複合材料研究--------------------------26
2-9高分子稀薄溶液之環動半徑研究------------------------------------27
第三章 實驗方法---------------------------------------------------------------31
3-1 原料-----------------------------------------------------------------------31
3-2 實驗儀器---------------------------------------------------------------37
3-3 實驗步驟---------------------------------------------------------------38
3-3-1 DSC溶液製備步驟---------------------------------------------38
3-3-2 DSC反應動力測試步驟---------------------------------------40
3-3-3 DMA與TSC三成份試片製備--------------------------------42
3-3-4熱刺激去極化電流(Thermally Stimulated Current, TSC)實驗測試--------------------------------------------------------45
3-3-5 動態機械分析(Dynamic Mechanical Analyzer,DMA)---50
3-3-6 ST/U/additive三成份系之相容性----------------------------50
3-3-7利用SAXS測定不飽和聚酯之環動半徑--------------------51
3-4性質測試與分析------------------------------------------------------52
3-4-1熱分析-------------------------------------------------------------46
3-4-2 FTIR定量分析--------------------------------------------------54
3-4-3 TSC的理論基礎------------------------------------------------63
3-4-3-1 熱刺激去極化分析儀 (TSC) 的物理原理-----------63
3-4-4 DMA理論基礎-------------------------------------------------68
3-4-5小角度X-ray散射(SAXS)之相關理論--------------------69
3-4-5-1 X-ray簡介---------------------------------------------------69
3-4-5-2 X光的產生--------------------------------------------------69
3-4-5-3 X光與中子散射--------------------------------------------71
3-4-6 SAXS測定高分子稀薄溶液以求算高分子環動半徑之理論------------------------------------------------------------72
3-4-6-1 Guinier Law-------------------------------------------------72
3-4-6-2 Zimm、Flory和Bueche光散射法------------------------74
3-4-6-3 Zimm Plot---------------------------------------------------76
3-4-7 聚苯乙烯標準樣品在環己烷溶劑中的環動半徑--------77
第四章 結果與討論------------------------------------------------------------78
4-1 ST/UP/additive未反應三成份系之相容性-----------------------78
4-1-1 ST/UP/RM系-------------------------------------------------------78
4-2 微觀結構--------------------------------------------------------------80
4-2-1 ST/UP兩成份系之微觀結構---------------------------------80
4-2-2 ST/UP(MA-PG)/CSR三成份系之微觀結構---------------85
4-2-3 ST/UP/RM三成份系之微觀結構----------------------------88
4-3 DSC反應動力---------------------------------------------------------94
4-3-1 ST/UP(MA-PG)/DV treated MMT三成份系之DSC反應動力-------------------------------------------------------------------94
4-3-2 ST/UP/CSR(Core-shell rubber)三成份系之DSC反應動力 ----------------------------------------------------------------------99
4-3-2-1 ST/UP(MA-PA-PG)/E1-S三成份系之DSC反應動力----------------------------------------------------------------------99
4-3-2-2 ST/UP(MA-PA-PG)/E1-M三成份系之DSC反應動力---------------------------------------------------------------------103
4-3-2-3 ST/UP(MA-PA-PG)/E1-L三成份系之DSC反應動力---------------------------------------------------------------------107
4-3-3 ST/UP/RM(Reactive Microgel)三成份系之DSC反應動力------------------------------------------------------------------111
4-4 Takayanagi 機械模式與各相區之玻璃轉移溫度-------------116
4-4-1 動態機械測試(DMA)---------------------------------------118
4-4-1-1 純粹不飽和聚酯樹脂系統-----------------------------118
4-4-1-2 ST/UP(MA-PA-PG)/CSR之三成份系----------------136
4-4-1-3 ST/UP/RM之三成份系----------------------------------150
4-4-2熱刺激去極化電流測試(TSC)------------------------------160
4-4-2-1純粹不飽和聚酯樹脂系統------------------------------160
4-4-2-2 ST/UP/CSR之三成份系---------------------------------177
4-4-2-3 ST/UP/RM之三成份系----------------------------------197
4-5 小角度X光散射法測定高分子之環動半徑(Rg)--------------210
4-5-1聚苯乙烯標準樣品的環動半徑之測量--------------------210
4-5-2不飽和聚酯在苯乙烯溶劑中的環動半徑-----------------216
第五章 結論--------------------------------------------------------------------222
參考文獻------------------------------------------------------------------------227
參考文獻
1.W. Worthy, Chem. Eng. News 7, 1987, March 16.
2.江文慶, 碩士論文, 台灣科技大學, 1996.
3.E.J.Bartkus and C.H.Kroekel, Appl.Polym.Symp,15,113(1970)
4.K.E Atkins,in Sheet Molding Compounds:Science and Technology. Ch.4, H.G.Kia ed., Hanser Publishers,N ew York,1993.
5.V. A. Pattison, R. R. Hindersinn, and W. T. Schwartz, J. Appl. Polym. Sci., 18, 2736(1974).
6.V. A. Pattison, R. R. Hindersinn, and W. T. Schwartz, J. Appl. Polym. Sci., 19, 3045(1975).
7.Y. J. Huang and C. M. Liang, Polymer, 37, 401(1996).
8.T. Mitani, H.Shiraish, K. Honda, and G. E. Owen in 44th Annual Conference, Composites Institute, Cincinnati, Ohio; the Society of the Plastics Industry(SPI), New York, 1989, P.12F.
9.W. Li and L. J. Lee, Polymer, 39, 5677(1998).
10.M. Kinkelaar, S. Muzumdar, and L. J. Lee, Polym. Eng. Sci., 35, 823(1995).
11.R. R. Hill, S. Muzumdar, and L. J. Lee, Polym. Eng. Sci., 35, 852(1995).
12.W. Funke, R. Kolitz, and W. Straehle, Makromol. Chem., 180, 2797 (1979)
13.Y. J. Huang, J. H. Wu, J. G. Liang, M.W. Hsu, and J. K. Ma, J. Appl. Polym. Sci. 2006 (Accepted).
14.E. Martuscelli, P.Musto, G. Ragosta, G. Scarinzi, and E. Bertotti, J. Polym. Sci., Part B:Polym. Phys., 31, 619(1993).
15.S. B. Pandit, and V. M. Nadkarni, Ind. Eng. Chem. Res., 33, 2778(1994).
16.蔡明洲,碩士論文,台灣科技大學, 2006.
17.B. M. Novak, Adv. Mater., 5, 422(1993).
18.X. Kornmann, L. A. Berghund, J. Sterte, and E. P. Giannelis, Polym. Eng. Sci., 38, 1351(1998).
19.Y.Kojima, A.Usuki, M.Kawasumi, A.Okada, T.Kurauchi, and O.Kamigaito, J.Polym.Sci. Part A: Polym.Chem, 31,983,(1993)
20.E. P. Giannelis, Adv. Mater., 8, 29(1996).
21.A.Usuki, Y. Kojima, M. Kawasumi, A. Okada, A. Fujushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res. 8, 1179(1993).
22.P. B. Messersmith and E. P. Giannelis, Chem. Mater., 6, 1719(1994).
23.W. Gilman and T. Kashiwagi, SAMPE Journal, 33, 42(1997).
24.陳銘琦,碩士論文,台灣科技大學,2006.
25.Y. J. Huang and J. C. Horng, Plymer, 39, 3683(1998).
26.R.J. Roe, Methods of X-ray and Neutron Scattering in Polymer Science, Oxford University Press, New York, 2000, Chapter 5.
27.Y. S. Yang and L. J. Lee, Polymer, 29 ,1793 (1988).
28.K. Horie, I. Mita, and H. Kambe, J. Polym. Sci. PartA-1: Polym. Chem., 7, 2561 (1969)
29.M.R. Kamal, S. Slurour.,and M. Ryan, SPE. ANTEC Papers. 19, 187 (1973).
30.S.Y. Pusatcioglu, A.L.Fricke., and J.C. Hasseler, J. Appl. Polym. Sci., 24, 937 (1979).
31.C. D. Han, and K. W. Lem, J. Appl. Polym. Sci., 28, 749 (1983).
32.J. F. Stevenson, Polym. Eng. Sci., 26(11), 746 (1989).
33.J. F. Stevenson, SPE. ANTEC. Papers, 26, 452(1980).
34.L. J. Lee, Polym. Eng. Sci., 21, 483 (1981).
35.Y. J. Huang, and L. J. Lee, AICHE. J., 31, 1585(1985).
36.C. D. Han, and D. S. Lee, J. Appl. Polym. Sci., 37, 2859 (1987).
37.C. S. Chern, and D. C. Sundberg, ACS. Polym. PREP, 26(1), 296 (1985).
38.G. L. Batch, and C. W. Mocosko, SPE. ANTEC Paper, 974(1987).
39.Y. J. Huang, J. D. Fan, and L. J. Lee, Polym. Eng. Sci., 30(11), 684(1990).
40.Y. J. Huang and T. J. Lu, and W. Hwu, Polym. Eng. Sci., 33, 1(1993).
41.Y. J. Huang and C. J. Chen, J. Appl. Polym. Sci., 47, 1533(1993).
42.Y. J. Huang and C. C. Su, J. Appl. Polym. Sci., 55, 305(1995).
43.Y. J. Huang, T. S. Chen, J. G. Huang, and F. H. Lee, J. Appl. Polym. Sci., 89, 3336(2003).
44.J. P. Dong, J. G. Huang, F. H. Lee, J. W. Roan, and Y. J. Huang, J. Appl. Polym. Sci., 91, 3388(2004).
45.W. Funke, Br. Polym. J., 21, 107, (1989).
46.Y.Hoshino, K.Kataoka, Y. Asanaka, and H. Takeuchi, 46th Annual Conference, Composite Institute, SPI, Session 21-A (Feb. 1991).
47.S. B. Pandit and V. M. Nadkani, Ind. Eng. Chem. Res., 33, 2778(1994).
48.D. S. Kim, K. Cho, J. H. An, and C. E. Park., J. Mater. Sci., 29, 1854(1994).
49.J. S. Ullett,and R. P. Chartoff, Polym. Eng. Sci., 35, 1086(1995).
50.M. Abbate, E. Martuscelli, P. Musto, G. Ragosta, and G. Scarinzi, J. Appl. Polym. Sci., 58, 1825(1995).
51.M. L. L. Maspochand , and A. B. Matinez, Polym.Eng. Sci., 38, 290(1998).
52.N. A. Miller and C. D. stirling, Polym. Polym. Comps., 9, 31(2001).
53.The B. F. Goodrich Co., WO 93/31374(Oct. 28, 1993).
54.K. F. Lin and Y. D. Shieh, J. Appl. Polym. Sci., 69, 2069(1998).
55.K. F. Lin and Y. D. Shieh, J. Appl. Polym. Sci., 70, 2313(1998).
56.P. Hazot, C. Pichot, and A. Maazouz, Macromol. Chem. Phys., 201, 632(2000).
57.B.J.P. Jansen, S. Rastogi, H. E. H. Meijer, and P. J. Lemstra, Macromolecules, 34, 3998(2001).
58.H.J. Sue, E.I. Garciameitin, and D.M. Picklman, in ”Polymer Toughening”, Ch. 5, Ed., C. B. Arends, Marcel Dekker, New York, 1996.
59.The Dow Chemical Company, US Patent 4,778,851(Oct. 18 1998).
60.J. Y. Qian, R. A. Pearson, V. L. Dimonie, and M. S. El-Aasser, J. Appl. Polym. Sci.,58, 439(1995).
61.W.D. Cook and O. Delatycki, J. Polym. Sci., PartB:Polym. Phys., 12, 2111(1974).
62.J. C. Lucas, J. Borrajo and R. J. J. Williams, Polymer, 34, 3216(1993).
63.C. B. Bucknall, I. K. Partridge and M. J. Phillips, Polymer, 32, 786(1991).
64.Y. J. Huang, S. C. Lee, and J. P. Dong, J. Appl. Polym. Sci., 78, 558(2000).
65.P. W. K. Lam, Polym. Eng. Sci., 29, 609(1989).
66.D. J. Suh, Y. T. Lim, and O. O. Park, Polymer, 41, 8557(2000).
67.R. K. Bharadwaj, A. R. Mehrabi, C. Hamilton, C. Trujillo, M, Murga, R. Fun, A. Chavira, and A. K. Thompsor, Polymer, 43, 3669(2002).
68.The Dow Chemical Company, US Patent 6, 287, 922 (Sep.11, 2001).
69.A. Al-khanabashi, M. El-Gamal, and A. Moet, J. Appl. Polym. Sci., 98, 767 (2005).
70.K. Ishizu, K. I. Tsubaki and T. Ono, Polymer, 39, 2935(1998)
71.T. J. Prosa, B. J. Bauer, E. J. Amis, D. A. Tomalia, R. Scherrenberg, J. Polym. Sci. : Part B: Polymer Physics, 35, 2913 (1997)
72.T. Konishi, T. Yoshizaki, T. Saito, Y. Einaga, and H. Yamakawa, Macromolecules 1990,23, 290 (1990)
73.L.H. Sperling, “Introduction to Physical Polymer Science,” 3rd Ed. Wiley, New York, 2001, P.85~90
74.M. Osa, T. Yoshizaki, and H. Yamakawa, Macromolecules 2000, 33, 4828.
75.郭庭蓁,碩士論文,台灣科技大學, 2006.
76.R.E.Grim, Clay Mineralogy, McGraw-Hill, New York (1953).
77.徐曼紋碩士論文,台灣科技大學,2003
78.Y.S. Yang and L.J.Lee., J. Appl. Polym. Sci., 36, 1325 (1988).
79.K.Horie, I Mita and H.Kambe, J. Polym. Sci., Part A1, 8, 2839 (1970).
80.Y. S. Yang and L. J. Lee, Macromolecules 20, 1490(1987).
81.盧天智,碩士論文,台灣科技大學,1980.
82.Y. J. Huang and J. S. Leu, Polym. 34, 301 (1993)
83.J. P. Ibar, ”Fundamentals of Thermal Stimulated Current and Relaxation Map Analysis”, SLP Press, New Canaan, CT, 1993.
84.G. Tessedre, S. Mezghani, A. Bernes, and C. Lacabanne, “Dielectric Spectrocopy of Polymeric Materials: Fundamentals and Applications,” J. P. Runt, and J. J. Fitzgerald, Eds., American Chemical Society, Washington, D.C., 1997, Chapter 8.
85.S. L. Rosen, “Fundamental Principles of Polymeric Materials, ” 2nd Ed., Wiley, New York, 1993, pp.321-337.
86.J. Als-Nielsen and D. McMorrow, ” Elements of Modern X-Ray Physics,” Wiley, New York, 2001.
87.B. D. Cullity, “Elements of X-ray Diffraction,“ 2nd Ed., Addison-Wesley, Reading, MA, 1978.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 以X光散射分析苯乙烯/不飽和聚酯/蒙特納石黏土三成份系之結構特性及苯乙烯/不飽和聚酯/特用添加劑三成份系之機械性質研究
2. 奈米級及次微米級核殼型橡膠添加劑、無機矽膠/有機高分子核殼型顆粒、及蒙特納石黏土對不飽和聚酯、乙烯基酯、及環氧樹脂之聚合固化反應動力及玻璃轉移溫度之影響研究
3. 奈米級及次微米級核殼型橡膠添加劑及蒙特納石黏土對苯乙烯/乙烯基酯/特用添加劑三成份系之体積收縮、內部可染色性、機械性質及微觀型態結構之影響研究
4. 反應式微膠顆粒型抗收縮劑之合成及苯乙烯/不飽和聚酯/特用添加劑三成份系之聚合固化後成品之機械性質研究
5. 反應性微膠顆粒型抗收縮劑、奈米級核殼型橡膠增韌劑與蒙特納石黏土對苯乙烯/不飽和聚酯/特用添加劑三成份系其聚合固化後成品之微觀型態結構、體積收縮特性及內部可染色性之影響研究
6. 反應性微膠顆粒型抗收縮劑、奈米級核殼型橡膠增韌劑及蒙特納石黏土對苯乙烯/不飽和聚酯/特用添加劑三成份系之體積收縮、內部可染色性、及微觀型態結構之影響研究
7. 非反應型與反應型抗收縮劑對不飽和聚酯樹脂之體積收縮與內部可染色性影響之研究
8. 抗收縮劑、核殼型橡膠增韌劑與蒙特納石黏土對苯乙烯/不飽和聚酯/特用添加劑三成份系其聚合固化後成品之微孔洞生成、微觀型態結構、物性及機械性質之影響
9. 抗收縮劑、核殼型橡膠增韌劑與蒙特納石黏土對苯乙烯/不飽和聚酯/特用添加劑三成份系之聚合固化反應動力及玻璃轉移溫度之影響
10. 反應性及非反應性聚酯型抗收縮劑對苯乙烯/不飽和聚酯/抗收縮劑三成分系統之反應動力及玻璃轉移溫度之影響研究
11. 反應型醋酸乙烯團聯共聚合物及非反應型飽和聚酯抗收縮劑對苯乙烯/不飽和聚酯/抗收縮劑系統之玻璃轉移溫度及機械性質之影響研究
12. 反應型醋酸乙烯團聯共聚合物及非反應型飽和聚酯抗收縮劑對苯乙烯/不飽和聚酯/抗收縮劑系統之體積收縮及內部染色性之影響研究
13. 甲基丙烯酸甲酯團聯共聚物型及醋酸乙烯團聯共聚物型抗收縮劑之合成及苯乙烯/不飽和聚酯/抗收縮劑三成份系之聚合固化研究
14. 低收縮不保和聚酯樹脂之收縮特性.內部染色性及機械性質之研究:壓克力樹脂型抗收縮劑之結構及分子量效應
15. 不飽和聚酯樹脂之合成及苯乙烯/不飽和聚酯二成份系與苯乙烯/不飽和聚酯/抗收縮劑三成份系之相溶性研究