跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/07 15:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張瑋玲
研究生(外文):Wei-Ling Zhang
論文名稱:台灣西南海域天然氣水合物潛力區之甲烷細胞科新種甲烷古菌的特性分析
論文名稱(外文):Isolation and Characterization of Family Methanocellaceae Species from Potential Methane Hydrate Area Offshore SW Taiwan
指導教授:賴美津
口試委員:湯森林黃啟裕
口試日期:2018-07-09
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:99
中文關鍵詞:KP-9鑽井區天然氣水合物甲烷古菌甲烷細胞科
外文關鍵詞:KP-9 areaMethane hydrateMethanoarchaeaMethanocellaceae
相關次數:
  • 被引用被引用:4
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
甲烷(Methane)俗稱天然氣(Natural gas)是人類經常使用的重要能源之一。大量甲烷在低溫高壓的含水環境下,會形成固態籠晶狀(Clathrate)的天然氣水合物(Gas hydrate)。天然氣水合物擁有分布廣、潔淨、儲量大等優勢,是近年來最具潛力的替代能源。研究團隊於台灣西南外海探勘,發現有明顯的海底仿擬反射(BSR)訊號、海洋底水高甲烷濃度與溶解硫化物濃度以及異常淺的硫酸鹽-甲烷界面(SMI)深度之現象,顯示此區域普遍有豐富的甲烷水合物賦存。根據碳同位素研究顯示這些甲烷多為生物性來源,是由甲烷古菌(Methanoarchaea; Methanogen)產生。為探討台灣西南海域深海底泥或天然氣水合物潛力區的甲烷古菌微生物相。2008-2011年間,以海洋研究船(Ocean Reasearch I and III, ORI and ORIII)於台灣西南海域泥火山群、變形前緣區、好景海脊、被動大陸邊坡等區域採集岩心樣本。透過增殖培養、連續稀釋法等策略,陳玟潔在被動大陸邊坡KP-9鑽井區篩選出菌株CWC-04。經由親緣關係比對,甲烷古菌CWC-04與Methanocella屬的物種相似度則為91.28-93.67%,顯示菌株CWC-04可能是Methanocellaceae科的新屬新種。菌株CWC-04為短桿具有鞭毛之氫利用型甲烷古菌,且較已知甲烷細胞屬標準菌株可生長於較低溫(20°C)、偏酸(pH 5.4)、高鹽度(0.68 M NaCl)之環境。以Illumina MiSeq™進行全基因體定序組裝後,獲得全長3.19 Mb的基因片段,是目前甲烷細胞屬內基因體最大、富含AT鹼基對之菌株。菌株CWC-04的1175個COGs中,有53個獨特的COGs,其中又以[COG(R)]佔最多數,而有947個COGs是與甲烷細胞屬菌株之間所共有的。另於增殖培養過程中,發現菌液由混濁轉變為澄清。透過電子顯微鏡觀察、菌液吸光值及甲烷累積圖之生長曲線測定等結果顯示菌株CWC-04確實被大小為170 nm球形且外套膜看似黑莓外觀之病毒VMce (Virus of Methanocella)感染。在深海環境天然氣水合物潛力區以甲烷為主的生態系統中,包括以甲烷生成作用獲得能量之甲烷古菌、共生的細菌群落(如硫酸還原菌)及以厭氧甲烷氧化作用獲取生理代謝能量的厭氧甲烷氧化古菌(ANME)等微生物在系統內的關係以及感染甲烷古菌病毒的出現,顯示快速的碳循環可能在基於甲烷之生態系統中發揮作用。
Methane, also known as natural gas, is one of the most important sources of energy that humans often use. Gas hydrates usually forms when methane and water freeze at high pressures and relatively low temperatures. They are widely distributed, clearest and the largest source of hydrocarbons on Earth. Enormous volumes of gas hydrate (methane hydrate) are considered as one of the new alternative energy in the 21st century. To explore the diversity of methanoarchaea at deep sea gas hydrate habitats, we tried to isolate methanogen from sediment samples of the gravity core collected at station 22 at KP-9 area southwestern Taiwan from ORIII-1368 cruise in 2009. The methanogen enrichment cultures were incubated in minimal and rich methanogen basal media with formate, acetate or methanol as substrate for methanogenesis. After the enrichment strategies combined the serial sub-transfer and vancomycin addition to inhibit the growth of bacteria, a pure and novel hydrogenotrophic methanogen, strain CWC-04, was obtained. Cells of strain CWC-04 were rod-shape (1.4-2.9 μm long by 0.5-0.6 μm wide) with flagellum.The phylogenetic analyses of the 16S rRNA gene confirmed its affiliation with Methanocellales, and Methanocella arvoryzae MRE50T was the most closely related species. The sequence identities of 16S rRNA gene between strain CWC-04 and MRE50T were 93.67%. Strain CWC-04 utilized H2+CO2, formate, formate+acetate, 2-propanol or 2-butanol as catabolic substrates and growth occurs at 20-45°C (optimally at 42°C), at pH 5.35-7.31 (optimum pH 5.35) and with less than 0.68 M of NaCl (optimum 0.17 M). Rifampicin was inhibit the growth of strain CWC-04 but tetracycline was not. The genome size of strain CWC-04 was 3.19 Mb and the DNA G+C content as determined by genome sequencing, was 46.19 mol%. Of the 1175 COGs identified within the strain CWC-04, all but 53 were identified within other Methanocella species, and 947 (80.60%) orthologue groups were shared by all COGs. Based on the morphological, phylogenetic and genomics characteristics presented here, it is evident that strain CWC-04 represents a novel genus and new species of family Methanocellaceae. The optical density of CWC-04 culture dropped abruptly upon entering the late-log growth phase and the virus-like particles (170 nm in diameter) were observed on and around the cells. This observation demonstrated strain CWC-04 harbors a lytic virus. The spherical shape with a diameter of 170 nm and a blackberry-like envelope of the virion was named as VMce (Virus of Methanocella). The investigation of the methane based ecosystem under sea have been focused mainly in the relation within methane producer, bacterial syntroph and AOM. The occurrence of methanoarchaeal viruses suggested the rapid carbon cycling may play a role in this methane based ecosystem.
摘要 i
Abstract ii
目錄 iv
表目錄 vii
圖目錄 viii
壹、前言 1
貳、前人研究 3
一、海域甲烷水合物(Marine methane hydrate) 3
二、古菌(Archaea) 3
(一) 泉古菌門(Crenarchaeota) 4
(二) 廣域古菌門(Euryarchaeota) 4
(三) 驚奇古菌門(Thaumarchaeota) 5
(四) 奈古菌門(Nanoarchaeota) 5
三、甲烷古菌及其對人類的影響與應用 5
(一) 甲烷古菌(Methanoarchaea)分類 6
(1) 甲烷桿菌目(Methanobacteriales) 6
(2) 甲烷球菌目(Methanococcales) 7
(3) 甲烷細胞目(Methanocellales) 8
(4) 甲烷微菌目(Methanomicrobiales) 8
(5) 甲烷八疊球菌目(Methanosarcinales) 10
(6) 甲烷火菌目(Methanopyrales) 12
(7) 甲烷熱原體菌目(Methanomassiliicoccales) 12
(二) 甲烷古菌對人類的影響與應用 12
四、甲烷生態系 13
(一) 海底泥火山 15
(二) 冷泉及天然氣水合物潛力區 16
五、台灣西南海域天然氣水合物潛力區相關研究 17
(一)KP-9鑽井區(KP-9 area) 18
(二) 泥火山群 18
(三) 變形前緣區(Deformation Front) 19
(四) 好景海脊(Good Weather Ridge) 20
(五) 台灣西南海域已純化甲烷古菌純菌株 20
六、微生物分類與鑑定 21
七、研究目的與重要結果 22
參、材料與方法 24
一、採樣時間與地點 24
二、除氧操作系統、藥劑與培養液 24
(一) 除氧操作系統(Hungate station) 24
(二) MB/W及MM/W 厭氧培養液配製 24
(三) 還原劑與碳源製備 25
(四) 抗生素溶液製備 26
(五) TGC (Thioglycollate)培養液配製 26
三、甲烷古菌増殖培養(Enrichment)與厭氧轉殖接種 26
(一) 接菌 27
(二) 氣相層析儀偵測樣本甲烷氣體 27
(三) 抗生素添加 27
(四) 連續稀釋法 28
(五) 滾管技術(Roll tube) 28
四、Roll tube菌株篩選 28
(一) 厭氧操作箱(Coy chamber) 29
(二) 挑取roll tube內單一菌落 29
五、微生物形態觀察 29
(一) 位相差顯微鏡(Phase-contrast microscope)觀察細胞形態 29
(二) 穿透式電顯(Transmission Electron Micrograph)觀察菌體與病毒 29
(三) 場發射掃描式電顯(Scanning Electron Microscope)觀察細胞 30
六、生長與生理生化特性分析 30
(一) 生長曲線測定 30
(二) 碳源利用測試 31
(三) 生長需求測試 31
(四) 溫度及生長範圍測試 32
(五) 氯化鈉濃度生長範圍測試 32
(六) 酸鹼值生長範圍測試 32
(七) SDS感受性測試 33
(八) 抗生素耐受性測試 33
七、核酸萃取與定量、膠體電泳分析 33
(一) 甲烷古菌染色體DNA萃取 33
(二) 核酸純度與定量分析 34
(三) 聚合酶連鎖反應(PCR) 34
(四) 核酸膠體電泳分析 35
(五) PCR增幅樣品純化回收 35
(六) DNA接黏反應(Ligation) 36
八、勝任細胞的製備與質體轉形作用 36
(一) 勝任細胞(Competent cell)之培養基製備 36
(二) 製備勝任細胞 37
(三) 質體轉形作用(Transformation) 37
(四) 質體抽取與純化 37
九、核酸定序與序列親緣關係分析 38
(一) 16S rRNA基因定序與序列分析 38
(二) 染色體DNA定序 39
十、基因體功能比較分析 39
(一) 編碼鞭毛與RCC-1蛋白之基因搜尋 39
(二) 蛋白質直系同源群(COGs)分析與范恩圖(Venn Diagram)繪製 40
十一、病毒收集與液相層析(FPLC)膠體管柱分離純化 40
(一) 病毒收集 40
(二) 液相層析膠體管柱分離純化 41
肆、結果與討論 43
一、KP-9鑽井區測站22的甲烷細胞科新屬新種–甲烷古菌CWC-04 43
(一) 甲烷古菌CWC-04增殖純化過程 43
(二) 菌株CWC-04在甲烷古菌的系統演化分類位階探討 43
(三) 甲烷古菌CWC-04細胞形態 44
(四) 生理特性分析 45
(五) 甲烷古菌CWC-04基因體功能比較分析 47
二、感染甲烷古菌CWC-04之病毒VMce (Virus of Methanocella) 49
(一) 病毒與宿主CWC-04之關係 49
(二) 病毒收集與純化 50
(三) VMce病毒結構觀察 51
三、台灣西南外海天然氣水合物潛力區岩心底泥甲烷古菌增殖培養與純化 51
伍、結論與展望 53
陸、表與圖 55
柒、參考文獻 78
捌、附錄 93
Appendix 1. fla operon related genes in genus Methanocella. 94
Appendix 2. 53 unique COGs in strain CWC-04 96
Appendix 3. The viruses of methanogens. 99
林殿順、林哲銓、李科豎、劉家瑄、王詠絢。2017。臺灣西南海域天然氣水合物探勘與資源量綜論。能資源大地工程。90: 63-70。
林曉武。2009。台灣西南海域新興能源¬-天然氣水合物資源調查與評估:地球化學調查研究:台灣西南海域自生性碳酸鹽及硫物種之變化與天然氣水合物賦存之關係(2/4)。中央地質調查所報告第98-27-C號,委辦計畫編號(98-5226904000-04-03)。
林曉武。2011。台灣西南海域新興能源-天然氣水合物資源調查與評估:地球化學調查研究:台灣西南海域自生性碳酸鹽及硫物種之變化與天然氣水合物賦存之關係(4/4)。中央地質調查所報告第100-25-C號,委辦計畫編號(100-5226904000-02-03)。
翁杰愔。2014。台灣西南海域深海底泥Methanoculleus及Methanosarcina之純化與特性分析。國立中興大學生命科學系碩士學位論文。
陳眉霏。2013。台灣西南海域甲烷水合物賦存區底泥甲烷太古生物之純化與特性分析。國立中興大學生命科學所碩士學位論文。
楊燦堯。2009。台灣西南海域新興能源¬-天然氣水合物資源調查與評估:地球化學調查研究:台灣西南海域海水與沉積物之氣體化學組成 (2/4)。中央地質調查所報告第98-27-A號,委辦計畫編號(98-5226904000-04-03)。
楊燦堯。2011。台灣西南海域新興能源¬-天然氣水合物資源調查與評估:地球化學調查研究:台灣西南海域海水與沉積物之氣體化學組成經濟部(4/4)。中央地質調查所報告第100-25-A號,委辦計畫編號(100-5226904000-02-03)。
經濟部能源局。2016。能源統計手冊。ISSN 1726-3743。18。
賴美津、陳聖中。2017。台灣甲烷太古生物誌。國立中興大學生命科學系。
賴美津。2008。台灣西南海域新興能源¬-天然氣水合物資源調查與評估:地球化學調查研究:台灣西南海域地質微生物(細菌與太古生物)多樣性調查與天然氣水合物形成與分解機制探討(1/4)。中央地質調查所報告第97-29-B號,委辦計畫編號(97-5226903000-04-03)。
賴美津。2009。台灣西南海域新興能源¬-天然氣水合物資源調查與評估:地球化學調查研究:台灣西南海域地質微生物(細菌與太古生物)多樣性調查與天然氣水合物形成與分解機制探討(2/4)。中央地質調查所報告第98-27-B號,委辦計畫編號(98-5226904000-04-03)。
賴美津。2010。台灣西南海域新興能源¬-天然氣水合物資源調查與評估:地球化學調查研究:台灣西南海域地質微生物(細菌與太古生物)多樣性調查與天然氣水合物形成與分解機制探討(3/4)。中央地質調查所報告第99-26-B號,委辦計畫編號(99-5226904000-04-03)。
賴美津。2011。台灣西南海域新興能源¬-天然氣水合物資源調查與評估:地球化學調查研究:台灣西南海域地質微生物(細菌與太古生物)多樣性調查與天然氣水合物形成與分解機制探討(4/4)。中央地質調查所報告第100-25-B號,委辦計畫編號(100-5226904000-02-03)。
簡新心。2016。台灣西南海域甲烷水合物賦存區甲烷微菌科新種之純化與特性分析。國立中興大學生命科學所碩士學位論文。
魏文心。2018。台灣西南海域深海底泥甲烷囊菌屬新種及甲烷古菌病毒之純化分類鑑定與病毒基因體解析。國立中興大學生命科學所碩士學位論文。
鐘三雄、劉家瑄。2007。新型態潔淨能源天然氣水合物。科學發展。412: 6-13。

Albers, S. and B. H. Meyer. 2011. The archaeal cell envelope. Nat. Rev. Microbiol. 9:414-426.
Albers, S. and K. F. Jarrell. 2015. The archaellum: how Archaea swim? Front. Microbiol. doi: 10.3389/fmicb.2015.00023.
Albers, S. V. and K. F. Jarrell. 2018. The archaellum : an update on the unique archaeal motility structure. Trends Microbiol. 26: 351-362.
Antunes, A., M. Taborda, R. Huber, C. Moissl, M. F. Nobre and M. S. da Costa. 2008. Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deeo-sea, hypersaline anoxic basin of the Red Sea, and emended description if the genus Halorhabdus. Int. J. Syst. Evol. Microbiol. 58: 215-220.
Appenzeller, T. 1991 Fire and ice under the deep-sea floor. Science 252: 1790-1792.
Aravalli, R. N., Q. She and R. A. Garrett. 1998. Archaea and the new age of microorganisms. Trends. Ecol. Evol. 13: 190-194.
Balch, W. E., G. E. Fox, C. J. Magrum, C. R. Woese and R. S. Wolfe. 1979. Methanogens: revalutation of a unique biological group. Microbial. Rev. 43: 260-296.
Baresi, L. and G. Bertani. 1984. Isolation of a bacteriophage for a methanogenic bacterium. In: Abstracts of Annual Meeting of the America Society for Microbiology, New Orleans. American Society for Microbiology, Washington, D.C. 174: 133.
Beal, E. J., C. H. House1 and V. J. Orphan. 2009. Manganese- and iron-dependent marine methane oxidation. Sciences. 325: 184-187.
Belly, R. T., B. B. Bohlool and T. D. Brock. 1973. The genus Thermoplasma. Ann Ny Acad Sci. 225: 94-107.
Berner, R. A. Sedimentary pyrite formation.1970. American Journal of Science. 268: 1-23.
Bertram, S., M. Blumenberg, W. Michaelis, M. Siegert, M. Krüger and R. Seifert. 2013. Methanogenic capabilities of ANME-archaea deduced from 13C-labelling approaches. Environ. Microbiol. 15: 2384-2393.
Biavati, B., M. Vast and J. G. Ferry. 1988. Isolation and characterization of Methanosphaera cuniculi sp. nov. Appl. Environ. Microbiol. 54: 768-771.
Biddle, J. F., Z. Cardman, H. Mendlovitz, D. B. Albert, K. G. Lloyd, A. Boetius and A. Teske. 2012. Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments. ISME J. 6: 1018-1031.
Boetius, A. and F. Wenzhöfer. 2013. Seafloor oxygen consumption fuelled by methane from cold seeps. Nature Geoscience. 6: 725–734.
Boone, D. R. 1987. Request for an opinion: replacement of the type strain of Methanobacterium formicicum and reinstatement of Methanobacterium bryantii sp. nov. nom. rev. (ex Balch and Wolfe, 1981) with M.o.H. (DSM 863) as the type strain. Int J Syst Bacteriol. 37: 172-173.
Boone, D. R., W. B. Whiteman and P. Rouviere. 1993 Diversity and taxonomy of methanogens. P. 35-80., In J. G. Ferry (ed.) Methanogenesis. Chapman and Hall, New York, USA.
Boone, D. R., W. B. Whitman and Y. Koga. 2001. Methanobacteriales, p. 213–235., In D. R. Boone, D. R., W. Castenholtz, G. M. Garrity (eds.) In Bergey’s Manual of Systematic Bacteriology, 2nd edn. Springer-Verlag, New York.
Bourry, C. B. Chazallon, J. L. Charlou, J. P. Donval, L. Ruffine, P. Henry, L. Geli, M. N. Cagatay, S. Lnan and M. Moreau. 2009. Free gas and gas hydrates from the sea of Maemaea, Turkey: chemical and structural characterization. Chemical Geology. 264: 197-206.
Bowers, K. J. and J. Wiegel. 2011. Temperature and pH optima of extremely halophilic archaea: a mini-review. Extremophiles. 15: 119-128.
Bräuer, S. L., H. Cadillo-Quiroz, R. J. Ward, J. B. Yavitt and S. H. Zinder. 2011. Methanoregula boonei gen. nov., sp. nov., an acidiphilic methanogen isolated from an acidic peat bog. Int. J. Syst. Evol. Microbiol. 61: 45-52.
Brochier, C., S. Gribaldo, Y. Zivanovic, F. Confalonieri and P. Forterre. Nanoarchaea: representatives of novel archaeal phylum or a fast-evolving euryarchaeal limeage related to Thermococcales? 2005. Genome Biol. 6: R42.
Brochier-Armanet, C., B. Boussau, S. Gribaldo and P. Forterre. 2008. Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat. Rev. Microbiol. 6: 245-252.
Bult, C.J., O. White, G. J. Olsen, L. Zhou, R. D. Fleischmann, G. G. Sutton, J. A. Blake, L. M. FitzGerald, R. A. Clayton, J. D. Gocayne, A. R. Kerlavage, B. A. Dougherty, J. F. Tomb, M. D. Adams, C. I. Reich, R. Overbeek, E. F. Kirkness, K. G. Weinstock, J. M. Merrick, A. Glodek, J. L. Scott, N. S. Geoghagen and J. C. Venter. 1996. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 273: 1058-1073.
Cakar, F., FG. Zingl, M. Moisi, J. Reidl and S. Schild. 2018. In vivo repressed genes of Vibrio cholerae reveal inverse requirements of an H+/Cl- transporter along the gastrointestinal passage. PNAS. 115: E2376-E2385.
Carlsson, M., L. Claesson, A. Heijbel, H. Jiang, A. Karlsson, and E. Macedo. 2008 Purification of Vlp-based vaccines using a new prepacked gel filtration column. Protein Sci. 18: 79.
Carte, J., R. Wang, H. Li, R. M. Terns and M. P. Terns. 2008. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 22: 3489-96.
Casanueva, A., N. Galada, G. C. Baker, W. D. Grant, S. Heaphy, B. Jones, M. Yanhe, A. Ventosa, J. Blamey and D. A. Cowan. 2008. Nanoarchaeal 16S rRNA gene sequences are widely dispersed in hyperthermophilic and mesophilic halophilic environments. Extremophiles. 12: 651-656.
Chaban, B., S. Y. Ng, M. Kanbe, I. Saltzman, G. Nimmo, S. Aizawa and K. F. Jarrell. 2007. Systematic deletion analyses of the fla genes in the flagella operon identify several genes essential for proper assembly and function of flagella in the archaeon, Methanococcus maripaludis. Mol. Microbiol. 66: 596-609.
Charlou, J. L., J. P. Donval, T. Zitter, N.Roy, P. Jean-Baptiste, J. P. Foucher and J. Woodside. 2003. Evidence of methane venting and geochemistry of brines on mud volcanoes of eastern Mediterranean Sea. Deep Sea Research Part I: Oceanographic Research Papers. 50: 941-958.
Chen, S. C., H. H. Huang, M. C. Lai, C. Y. Weng, H. H. Chiu, S. L. Tang, D. Y. Rogozin and A. G. Degermendzhy. 2018. Methanolobus psychrotolerans sp. nov., a psychrotolerant methanoarchaeon isolated from a saline meromictic lake in Siberia. Int. J. Syst. Evol. Microbiol. 68: 1378-1383.
Chen, S. C., M. F. Chen, M. C. Lai, C. Y. Weng, S. Y. Wu, S. W. Lin, T. F. Yang and P.C. Chen. 2015. Methanoculleus sediminis sp. nov., a methanogen from sediments near a submarine mud volcano. Int. J. Syst. Evol. Microbiol. 65: 2141-2147.
Colombet, J, A. Robin, L. Lavie, Y. Bettarel, H. M. Cauchie and T. Sime-Ngando. 2007. Virioplankton 'pegylation': use of PEG (polyethylene glycol) to concentrate and purify viruses in pelagic ecosystems. J MICROBIOL METH. 71: 212-9.
Cowan, DA. 1992. Biotechnology of the Archaea. Trends Biotechnol. 10: 315-23.
Dellas, N. and J. C. Snyder, B. Bolduc and M. J. Young. 2014. Archaeal Viruses: Diversity, Replication, and Structure. Annu Rev Virol. 1: 399-426.
Delong, E. F. 1992. Archaea in coastal marine environments. PNAS. 89: 5685-5689.
Demeter, J., M. Morphew and S. Sazer. 1995. A mutation in the RCC1-related protein pim1 results in nuclear envelope fragmentation in fission yeast. PNAS. 92: 1436–1440.
Di, H. J., K. C. Cameron, J. P. Shen, C. S. Winefield, M. O’Callaghan, S. Bowatte and J. Z. He. 2010. Ammonia-oxidizing bacteria and archaea growunder contrasting soil nitrogen conditions. FEMS Microbiol Ecol. 72: 386-394.
Dimitrov L. I. 2002. Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth-Sci. Rev. 59: 49-76.
Dojka, M. A., P. Hugenholtz, K. S. Haack and R. N. Pace. 1998. Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol. 10: 3869-77.
Dridi, B., M. L. Fardeau, B. Ollivier, D. Raoult and M. Drancourt. 2012. Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int. J. Syst. Evol. Microbiol. 62: 1902-1907.
Egger, M., O. Rasigraf, C. J. Sapart, ́T. Jilbert, M. S. M. Jetten, T. Röckmann, C. van der Veen, N. Banda, B. Kartal, K. F. Ettwig and C. P. Slomp. 2015. Iron-mediated anaerobic oxidation of methane in Brackish Coastal Sediments. Environ. Sci. Technol. 49: 277-283.
Eid, J., A. Fehr, J. Gray, K. Luong, J. Lyle, G. Otto, P. Peluso, D. Rank, P. Baybayan, B. Bettman, A. Bibillo, K. Bjornson, B. Chaudhuri, F. Christians, R. Cicero, S. Clark, R. Dalal, A. Dewinter, J. Dixon, M. Foquet, A. Gaertner, P. Hardenbol, C. Heiner, K. Hester, D. Holden, G. Kearns, X. Kong, R. Kuse, Y. Lacroix, S. Lin, P. Lundquist, C. Ma, P. Marks, M. Maxham, D. Murphy, I. Park, T. Pham, M. Phillips, J. Roy, R. Sebra , G. Shen, J. Sorenson, A. Tomaney, K. Travers, M. Trulson, J. Vieceli, J. Wegener, D. Wu, A. Yang, D. Zaccarin, P. Zhao, F. Zhong, J. Korlach and S. Turner. 2009. Real-time DNA sequencing from single polymerase molecules. Science. 323: 133-138.
Elkins, J. G., M. Podar, D. E. Graham, K. S. Makarova, Y. Wolf, L. Ranau, B. P. Hedlund, C. Brochier-Armanet, V. Kunin, I. Anderson, A. Lapidus, E. Goltsman, K. Barry, E. V. Koonin, P. Hugenholtz, N. Kyrpides, G. Wanner, P. Richardson, M. Keller and K. O. Stetter. 2008. A korarchaeal genome reveals insights in to the evolution of the Archaea. PNAS. 105: 8102-8107.
Ettwig, K. F., M. K. Butler, D. L. Paslier, E. Pelletier, S. Mangenot, M. M. M. Kuypers, F. Schreiber, B. E. Dutilh, J. Zedelius, D. de Beer, J. Gloerich, H. J. C. T. Wessels, T. van Alen, F. Luesken, M. L. Wu, K. T. van de Pas-Schoonen1, H. J. M. O. den Camp, E. M. Janssen-Megens, K. Francoijs, H. Stunnenberg, J. Weissenbach, M. S. M. Jetten1 and M. Strous. 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature. 464: 543-550.
Felden, J., S. E. Ruff, T. Ertefai, F. Inagaki, K. U. Hinrichs and F. Wenzhofer. 2014. Anaerobic methanotrophic community of a 5346-m-deep vesicomyid clam colony in the Japan Trench. Geobiology. 12: 183-199.
Ferguson, T. J. and R. A Mah. 1983. Isolation and characterization of a H2-oxidizing thermophilic methanogen. Appl. Environ. Microbiol. 45: 265-274.
Ferry, J. G., P. H. Smith and R. S. Wolfe. 1974. Methanospirillum, a new genus of methanogenic bacteria, and characterization of Methanospirillum hungatii sp.nov. Int. J. Syst. Evol. Microbiol. 24: 465-469.
Firtel, M. and T. J. Beveridge. 1995. Scanning probe microscopy in microbiology. Micron. 26: 347-362.
Garcia, J. L., B. K. Patel and B. Ollivier. 2000. Taxonomic, phylogenetic, and ecological diversity of methanogenetic Archaea. Anaerobe. 6: 205-226.
Garcia, J. L., B. Ollivier and W. B. Whitman. 2006. The Order Methanomicrobiales. p. 208-230. In: M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer and E. Stackebrandt (eds), The Prokaryotes. DOI: 10.1007/0-387-30743-5_10. Springer-Verlag, New York.
Giulio, M. D. 2007. Ther tree of life might be rooted in the branch leading to Nanoarchaeota. Gene. 401: 108-113.
Gong, B., M. Shin, J. Sun, C. H. Jung, E. L. Bolt, J. van der Oost and J. S. Kim. 2014. Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3. PNAS. 111: 16359-64.
Gray, J. P. and R. P. Herwig. 1996. Phylogenetic analysis of the bacterial communities in marine sediments. Appl. Environ. Microbiol. 62: 4049-4059.
Grissa, I., G. Vergnaud and C. Pourcel. 2007. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 35: 52-57.
Hadjebi, O., E. Casas-Terradellas, R. F. Garcia-Gonzalo and L. J. Rosa. 2008. The RCC1 superfamily: from genes, to function, to disease. BBA-Mol Cell. 1783: 1467-1479.
Haft, D. H., J. Selengut, E. F. Mongodin and K. E. Nelson. 2005. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput. Biol. 1: e60.
Haroon, M. F., S. H. Hu, Y. Shi, M. Imelfort, J. Keller, P. Hugenholtz, Z. G. Yuan and G. W. Tyson. 2013. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature. 500: 567.
Harrison, B. K., H. Zhang, W. Berelson, V. J. Orphan. 2009. Variations in archaeal and bacterial diversity associated with the sulfate-methane transition zone in continental margin sediments (Santa Barbara Basin, California). Appl Environ Microbiol. 75: 1487-99.
Hedderich, R., O. Klimmek, A. Kröger, R. Dirmeier, M. Keller and K. O. Stetter. 1998. Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol Rev. 22: 353-381.
Holler, T., F. Widdel, K. Knittel, R. Amann, M. Y. Kellermann, K. U. Hinrichs, A. Teske, A. Boetius and G. Wegener. 2011. Thermophilic anaerobic oxidation of methane by marine microbial consortia. ISME J. 5: 1946-1956.
Horz, H.-P. and G. Conrads. 2011. Methanogenic Archaea and oral infections – ways to unravel the black box. Oral Microl.Immunol. 3: 221-236.
Huber, H., M. J. Hohn, R. Rachel, T. Fuchs, V. C. Wimmer and K. O. Stetter. 2002. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature. 417: 63-67.
Hung, C. C. and M. C. Lai. 2013. The phylogenetic analysis and putative function of lysine 2,3-aminomutase from methanoarchaea infers the potential biocatalysts for the synthesis of β-lysine. J Microbiol Immunol. 46: 1-10.
Hungate, R. E. 1969. A rolltube method for cultivation of strict anaerobes, p117-132. In J. R. Norris and D. W. Ribbons (ed.) Method in microbiology, vol 3B. Academic press Inc., New York.
Huo, Y., K. H. Nam, F. Ding, H. Lee, L. Wu, Y. Xiao, M. D. Jr. Farchione, S. Zhou, K. Rajashankar, I. Kurinov, R. Zhang and A. Ke. 2014. Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation. Nat Struct Mol Biol. 21: 771-777.
Imachi, H., S. Sakai, H. Nagai, T. Yamaguchi, and K. Takai. 2009. Methanofollis ethanolicus sp nov., an ethanol-utilizing methanogen isolated from a lotus field. Int. J. Syst. Evol. Microbiol. 59: 800-805.
Inagaki, F., T. Nunoura, S. Nakagawa, A. Teskse, M. Lever, A. Lauer, M. Suzuki, K. Takai, N. Delwiche, F. S. Colwell, K. H. Nealson, K. Horikoshi, S. D′Hondt, and B. B. Jorgensen. 2006. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. PNAS. 103: 2815-2820.
Ivanova, N., C. Daum, E. Lang, B. Abt, M. Kopitz and E. Saunders., et al. 2010 Complete genome sequence of Haliangium ochraceum type strain (SMP-2). Stand Genomic Sci. 2: 96-106.
Jain, S., A. Caforio and A. J. Driessen. 2014. Biosynthesis of archaeal membrane ether lipids. Front. Microbiol. doi: 10.3389/fmicb.2014.00641. eCollection 2014.
Kadnikov, V. V., A. V. Mardanov, A. V. Beletsky, O. V. Shubenkova, T. V. Pogodaeva, T. I. Zemskaya, N. V. Ravin, and K. G. Skryabin. 2012. Microbial community structure in methane hydrate-bearing sediments of freshwater Lake Baikal. FEMS Microbiol. Ecol. 79: 348-358.
Kao-Kniffin, J., B. J. Woodcroft, S. M. Carver, J. G. Bockheim, J. Handelsman, G. W. Tyson, K. M. Hinkel and C. W. Mueller. 2015. Archaeal and bacterial communities across a chronosequence of drained lake basins in arctic alaska. Sci. Rep. 5: 18165.
Kashefi, K. and D. R. Lovley. 2003. Extending the upper temperature limit for life. Science. 301: 934.
Kendall, M. M., Y. Liu, M. Sieprawska-Lupa, K. O. Stetter, W. B. Whitman and D. R. Boone. 2006. Methanococcus aeolicus sp. nov., a mesophilic, methanogenic archaeon from shallow and deep marine sediments. Int. J. Syst. Evol. Microbiol. 56: 1525-1529.
Knittel, K. and A. Boetius. 2009. Anaerobic oxidation of methane: Progress with an unknown process. Annu. Rev. Microbiol. 63: 311-334.
Knittel, K., T. Losekann, A. Boetius, R. Kort and R. Amann. 2005. Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol. 71: 467-479.
Knox, M. and J. Harris. 1986. Isolation and characterization of a bacteriophage of Methanobrevibacter smithii. In XIV International Congress on Microbiology.
Koga, Y., H. Morii, M. Akagawa-Matsushita and M. Ohga. 1998. Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens: Further analysis of lipid component parts. Biosci. Biotechnol. Biochem. 62: 230-236.
Könneke, M., A. E. Bernhard, J. R. de la Torre, C. B. Walker, J. B. Waterbury and D. A. Stahl. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature. 437: 543-546.
Krukenberg, V., K. Harding, M. Richter, F. O. Glöckner, H. R. Gruber-Vodicka, B. Adam, J. S. Berg, K. Knittel, H. E. Tegetmeyer, A. Boetius and G. Wegener. 2016. Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in thethermophilic anaerobic oxidation of methane. Environ. Microbiol.18: 3073-3091.
Kumar, S., G. Stecher and K. Tamura. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 33: 1870-1874.
Kurr, M., R. Huber, H. Konig, H. W. Jannasch, H. Fricke, A. Trincone, J. K. Kristjansson and K. O. Stetter. 1991. Methanopyrus kandleri, gen., sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110-degrees-c. Arch. Microbiol. 156: 239-247.
La Cono, V., F. Smedile, G. Bortoluzzi, E. Arcadi, G. Maimone, E. Messina, M. Borghini, E. Oliveri, S. Mazzola, S. L'Haridon, L. Toffin, L. Genovese, M. Ferrer, L. Giuliano, P. N. Golyshin and M. M. Yakimov. 2011. Unveiling microbial life in new deep-sea hypersaline Lake Thetis. Part I: Prokaryotes and environmental settings. Environ. Microbiol. 13: 2250-2268.
Lai, M. C. and C. J. Shih. 2001. Characterization of Methanococcus voltaei Strain P2F9701a, a new methanogen isolated from estuarine environment. Curr. Microbiol. 42: 432-437.
Lai, M. C. and R. P. Gunsalus. 1992. Glycine betaine and Potassium are the major compatible solutes in the extreme halophilic methanogens. Journal of Bacteriology. 174: 7474-7477.
Lai, M. C. and S. C. Chen. 2001. Methanofollis aquaemaris sp. nov., a methanogen isolated from an aquaculture fish pond. Int. J. Syst. Evol. Microbiol. 51: 1873-1880.
Lai, M. C., C. C. Lin, P. H. Yu, Y. F. Huang and S. C. Chen. 2004. Methanocalculus chungshingensis sp. nov., isolated from an estuary and a marine fishpond in Taiwan. Int. J. Syst. Evol. Microbiol. 54:183-189.
Lai, M. C., C. M. Shu, M. S. Chiou, T. Y. Hong, M. J. Chuang and J. J. Hua. 1999. Characterization of Methanosarcina mazei N2M9705 isolate from an aquaculture fishpond. Curr. Microbiol. 39: 79-84.
Lai, M. C., C. M. Shu, S. C. Chen, L. J. Lai, M. S. Chiou and J. J. Hua. 2000 Methanosarcina mazei strain O1M9704, methanogen with novel tubule isolated from estuarine environment. Curr. Microbiol. 41: 15-20.
Lai, M. C., D. R. Yang and M. J. Chuang. 1999. Regulatory factors associated with synthesis of the osmolyte glycine betaine in the halophilic methanoarchaeon Methanohalophilus portucalensis. Appl. Envi. Microbiol.65: 828-833.
Lai, M. C., K. R. Sowers, D. E. Robertson, M. F. Roberts and R. P. Gunsalus. 1991. Distrubution of compatible solutes in the halophilic methanogenic archaebacteria. J. Bacteriol. 173: 5352-5358.
Lai, M. C., S. C. Chen, C. M. Shu, M. S. Chiou, C. C. Wang, M. J. Chuang, T. Y. Hong, C. C. Liu, L. J. Lai and J. J. Hua. 2002. Methanocalculus taiwanensis sp. nov., isolated from an estuarine environment. Int. J. Syst. Evol. Microbiol. 52: 1799-1806.
Lai, S. J. and M. C. Lai. 2011. Characterization and Regulation of the Osmolyte Betaine Synthesizing Enzymes GSMT and SDMT from Halophilic Methanogen Methanohalophilus portucalensis. Plos One. doi:10.1371/journal.pone.0025090.
Lauerer, G., J. K. Kristjansson, T. A. Langworthy, H. König and K. O. Stetter. 1986. Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97°C. Syst. Appl. Microbiol. 8:100-110.
Lazar, C. S., R. J. Parkes, B. A. Cragg, S. L′Haridon and L. Toffin. 2012. Methanogenic diversity and activity in hypersaline sediments of the centre of the Napoli mud volcano, Eastern Mediterranean Sea. Environ. Microbiol. 13: 2078-2091.
Lin, L. H., L. W. Wu, T. W. Cheng, W. X. Tu, J. R. Lin, T F. Yang, P. C. Chen, Y. Wang and P. L. Wang. 2014. Distributions and assemblages of microbial communities along a sediment core retrieved from a potential hydrate-bearing region offshore southwestern Taiwan. Journal of Asian Earth Sciences. http://dx.doi.org/10.1016/ j.jseaes.2014.02.014.
Liu, C. S., I. L. Huang, and L. S. Teng. 1997. Structural features off southwestern Taiwan. Mar. Geo. 137: 305-319.
Liu, C. S., P. Schnürle, Y. Wang, S. H. Chung, S. C. Cheng and T. H. Hsiuan. 2006. Distribution and characters of gas hydrate offshore of Southwestern Taiwan. Terr. Atmos. Ocean. Sci. 4: 615-644.
Liu, Y. 2010. Methanomicrobiales. p. 583-589. In K. N. Timmis (ed.), Handbook of Hydrocarbon and Lipid Microbiology. DOI: 10.1007/978-3-540-77587-4_45. Springer-Verlag, New York.
Lloyd, K. G. L. Schreiber, D. G. Petersen, K. U Kjeldsen, M. A. Lever, A. D. Steen, R. Stepanauskas, M. Richter, A. Kleindienst, S. Lenk, A. Schramm and B. B. Jorgensen. 2013. Predominant archaea in marine sediments degrade detrital proteins. Nature Letter. 496: 215-220.
Lü, Z. and Y. Lu. 2012. Methanocella conradii sp. nov., a thermophilic, obligate hydrogenotrophic methanogen, isolated from Chinese rice field soil. Plos One. 7: e35279.
Lyu, Z. and Y. Lu. 2015. Comparative genomics of three Methanocellales strains reveal novel taxonomic and metabolic features. Env Microbiol Rep. 7: 526-537.
Ma, K., X. Liu and X. Dong. 2006. Methanosaeta harundinacea sp. nov., a novel acetate-scavenging methanogen isolated from a UASB reactor. Int. J. Syst. Evol. Microbiol. 56: 127-131.
Maignien, L., R. J. Parkes, B. Cragg, H. Niemann, K. Knittel, S. Coulon, A. Akhmetzhanov and N. Boon. 2013. Anaerobic oxidation of methane in hypersaline cold seep sediments. FEMS Microbiol. Ecol. 83: 214-231.
Makarova, K.S., Y. I. Wolf, O. S. Alkhnbashi, F. Costa, S. A. Shah, S. J. Saunders, R. Barrangou, S. J. Brouns, E. Charpentier, D. H. Haft, P. Horvath, S. Moineau, F. J. Mojica, R. M. Terns, M. P. Terns, M. F. White, A. F. Yakunin, R. A. Garrett, J. van der Oost, R. Backofen and E. V. Koonin. 2015. An updated evolutionary classification of CRISPR–Cas systems. Nat Rev Microbiol. 13: 722-736.
Meile, L., U. Jenal, D. Studer, M. Jordan, and T. Leisinger. 1989. Characterization of ψM1, a virulent phage of Methanobacterium thermoautotrophicum Marburg. Arch. Microbiol. 152: 105-110.
Milkov, A. V., R. Sassen, T. V. Apanasovich and F. G. Dadashev. 2003. Global gas flux from mud volcanoes: a significant source of fossil methane in the atmosphere and the ocean. Geophys. Res. Lett. 30: 1037.
Miller, T. L. and M. J. Wolin. 1985. Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch. Microbiol. 141: 116-122.
Million, M., Alou, MT., Khelaifia, S., Bachar, D., Lagier, J-C., Dione, N., Brah, S., Hugon, P., Lombard, V., Armougom, F., Fromonot, J., Robert, C.,Michelle, C., Diallo, A., Fabre, A., Guieu, R., Sokhna, C., Henrissat, B., Parola, P., and Raoult, D. 2016. Increased Gut Redox and Depletion of Anaerobic and Methanogenic Prokaryotes in Severe Acute Malnutrition.
Mori, K., T. Iino, K. Suzuki, K. Yamaguchi and Y. Kamagata. 2012. Aceticlastic and NaCl-requiring methanogen “Methanosaeta pelagica” sp. nov., isolated from marine tidal flat sediment. Appl. Environ. Microbiol. doi:10.1128/AEM.07484-11.
Mulepati, S. and S. Bailey. 2011. Structural and biochemical analysis of nuclease domain of clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 3 (Cas3). J Biol Chem. doi: 10.1074/jbc.M111.270017.
Nam, K. H., C. Haitjema, X. Liu, F. Ding, H. Wang, M. P. DeLisa and A. Ke. 2012. Cas5d Protein Processes Pre-crRNA and Assembles into a Cascade-like Interference Complex in Subtype I-C/Dvulg CRISPR-Cas System. Structure. 20: 1574-84.
Narrowe., A. B., J. C. Angle, R. A. Daly, K . C. Stefanik, K. C. Wrighton and C. S. Miller. 2017. High-resolution sequencing reveals unexplored archaeal diversity in freshwater wetland soils. Environ. Microbiol. 19: 2192-2209.
Niu M., X. Fan, G. Zhuang, Q. Liang and F. Wang. 2017. Methane-metabolizing microbial communities in sediments of the Haima cold seep area, northwest slope of the South China Sea. FEMS Microbiol Ecol. doi: 10.1093/femsec/fix101.
Nölling, J., A. Groffen, and W. M. de Vos. 1993. ФF1 and ФF3, two novel virulent, archaeal phages infecting different thermophilic strains of the genus Methanobacterium. Microbiology 139: 2511-2516.
Nuñez, J. K., A. S. Lee, A. Engelman and J. A. Doudna. 2015. Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature. 519: 193-198.
Nuñez, J. K., P. J. Kranzusch, J. Noeske, A. V. Wright, C. W. Davies and J. A. Doudna. 2014. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat Struct Mol Biol. 21: 528-534.
Ollivier, B. O., P. Caumette, J. Garcia, and R. A. Mah. 1994. Anaerobic bacteria from hypersaline enviroments. Microbiol. Rev. 58: 27-38.
Ollivier, B., J. L. Cayol, B. K. Patel, M. Magot, M. L. Fardeau and J. L. Garcia. 1997. Methanoplanus petrolearius sp. nov., a novel methanogenic bacterium from an oil-producing well. FEMS Microbiol. Lett. 147: 51-56.
Omoregie, E. O., H. Niemann, V. Mastalerz, G. J. de Lange, A. Stadnitskaia, J. Mascle, J. P. Foucher and A. Boetius. 2009. Microbial methane oxidation and sulfate reduction at cold seeps of the deep Eastern Mediterranean Sea. Mar. Geol. 261: 114-127.
Orcutt, B. N., J. B. Sylvan, N. J. Knab, and K. J. Edwards. 2011. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol. Mol. Biol. Rev. 75: 361-422.
Pachiadaki, M. G., A. Kallionaki, A. Dahlmann, G. J. de Lange and K. A. Kormas. 2011. Diversity and spatial distribution of prokaryotic communities along a sediment vertical profile of a deep-sea mud volcano. Microb. Ecol. 62: 655-668.
Pachiadaki, M. G., V. Lykousis, E. G. Stefanou and K. A. Kormas. 2010. Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Mediterranean Sea). FEMS Microbiol. Ecol. 72: 429-444.
Parshina, S. N., A. V. Ermakova, M. Bomberg and E. N. Detkova. 2014. Methanospirillum stamsii sp. nov., a psychrotolerant, hydrogenotrophic, methanogenic archaeon isolated from an anaerobic expanded granular sludge bed bioreactor operated at low temperature. Int. J. Syst. Evol. Microbiol. 64: 180-186.
Patel, G. B. and G. D. Sprott. 1990. Methanosaeta concilii gen. nov., sp. nov. ("Methanothrix concilii") and Methanosaeta thermoacetophila nom. rev., comb. nov.. Int. J. Syst. Bacteriol. 40: 79-82.
Paul, K., J. O. Nonoh, L. Mikulski, and A. Brune. 2012. ″Methanoplasmatales,″ Thermoplasmatales-related Archaea on termite guts and other environments, are seventh order of methanogens. Appl. Environ. Microbiol. 78: 8245-8253.
Reed, D. W., Y. Fujita, M. E. Delwiche, D. B. Blackweder, P. P. Sheridan, T. Uchida and F. S. Colwell. 2002. Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin. Appl. Environ. Microbiol. 68: 3759-3770.
Rodrigues-Oliveira, T., A. Belmok, D. Vasconcellos, B. Schuster and C. M. Kyaw. 2017. Archaeal S-Layers: Overview and Current State of the Art. Front Microbiol. 8: 2597.
Ruff, S. E., J. F. Biddle, A. P. Teske, K. Knittel, A. Boetius and A. Ramette. 2015. Global dispersion and local diversification of the methane seep microbiome. PNAS. USA. 112: 4015-4020.
Sakai, S., H. Imachi, S. Hanada, A. Ohashi, H. Harada and Y. Kamagata. 2008. Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov. Int. J. Syst. Evol. Microbiol. 58: 929-936.
Sakai, S., M. Ehara, I. C. Tseng, T. Yamaguchi, S. L. Bräuer, H. Cadillo-Quiroz, S. H. Zinder and H. Imachi. 2012. Methanolinea mesophila sp. nov., a hydrogenotrophic methanogen isolated from rice field soil, and proposal of the archaeal family Methanoregulaceae fam. nov. within the order Methanomicrobiales. Int. J. Syst. Evol. Microbiol. 62: 1389-1395.
Sakai, Sanae., C. Ralf, L. Werner and I. Hiroyuki. 2010. Methanocella arvoryzae sp. nov., a hydrogenotrophic methanogen isolated from rice field soil. Int J Syst Evol Micr. 60: 2918-2923.
Samai, P., N. Pyenson, W. Jiang, G. W. Goldberg, A. Hatoum-Aslan and L. A. Marraffini. 2015. Co-transcriptional DNA and RNA Cleavage during Type III CRISPR-Cas Immunity. Cell. 161: 1164-74.
Sambrook, J. and D. W. Russell. 2001. Preparation and transformation of competent E. coli using calcium chloride. In Molecular cloning: A Laboratory Mannual, 3rd edition, Cold Spring Laboratory, Cold Spring Habor, New York.
Samuel, B. S., E. E. Hansen, J. K. Manchester, P. M. Coutinho, B. Henrissat, R. Fulton, P. Latreille, K. Kim, R. K. Wilson and J. I. Gordon. 2007. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut.PNAS. 104: 10643-10648.
Schubert, C. J., F. Vazquez, T. Lösekann-Behrens, K. Knittel, M. Tonolla and A. Boetius. 2011. Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). FEMS. Microbiol. Ecol. 76: 26-38.
Segerer, A., T. Langworthy and K. O. Stetter. 1988. Thermoplasma acidophilum and Thermoplasma volcanicum sp. nov. from solfatara fields. Syst Appl Microbiol. 10: 161-171.
Sharma, A., Y. Kawarabayasi, T. Satyanarayana. 2012. Acidophilic bacteria and archaea: acid stable biocatalysts and their potential applications. Extremophiles. 16: 1-19.
Shcherbakova, V., Y. Yoshimura, Y. Ryzhmanova, Y. Taguchi, T. Segawa, V. Oshurkova and E. Rivkina. 2016. Archaeal communities of Arctic methane-containing permafrost. FEMS Microbiol. Ecol. doi: 10.1093/femsec/fiw135.
Shokralla, S. I., J. L. Spall, J. F. Gibson and M. Hajibabaei. 2012. Next-generation sequencing technologies for environmental DNA research. Mol. Ecol. 21: 1794-1805.
Sinkunas, T., G. Gasiunas, C. Fremaux, R. Barrangou, P. Horvath and V. Siksnys. 2011. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J. 30: 1335-42.
Sorokin, D. Y., B. Abbas, A. Y. Merke, W. I. C. Rijpstra, J. S. S. Damsté, M. V. Sukhacheva and M. C. M. van Loosdrecht. 2015. Methanosalsum natronophilum sp. nov., and Methanocalculus alkaliphilus sp. nov., haloalkaliphilic methanogens from hypersaline soda lakes. Int. J. Syst. Evol. Microbiol. 10: 3739-3745.
Sorokin, D. Y., B. Abbas, M. Geleijnse, N. V. Pimenov, M. V. Sukhacheva and M. C. M. van Loosdrecht. 2015. Methanogenesis at extremely haloalkaline conditions in the soda lakes of Kulunda Steppe (Altai, Russia). FEMS Microbiol. Ecol. doi: 10.1093/femsec/fiv016.
Sorokin, D.Y., K. S. Makarova, B. Abbas, M. Ferrer, P. N. Golyshin, E. A. Galinski, S. Ciordia, M. C. Mena, A. Y. Merkel, Y. L. Wolf, M. C. M. van Loosdrecht and E. V. Koonin. 2017. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat. Microbiol. 2: 17081.
Stetter, K. O., M. Thomm, J. Winter, G. Wildgruber, H. Huber, W. Zillig, D. Janecovic, H. König, P. Palm and S. Wunder. 1981. Methanothermus fervidus, sp. nov. a novel extremely thermophilic methanogen isolated from an icelandic hot spring. Zentbl. Bakteriol. Mikrobiol. Hyg. C2: 166-178.
Stevens, T.J., and M. Paoli. 2007. RCC1-like repeat proteins: a pangenomic, structurally diverse new superfamily of β-propeller domains. Proteins Struct Funct Genet. 70: 378–387.
Suenaga, H. 2012. Targeted metagenomics: a high-resolution metagenomics approach for specific gene clusters in complex microbial communities. Environ. Microbiol. 14: 13-22.
Takai, K. and K. Horikoshi. 1999. Genetic diversity of Archaea in deep-sea hydrothermal vent environments. Genetics. 152: 1285-1297.
Takai, K., A. Inoue and K. Horikoshi. 2002. Methanothermococcus okinawensis sp. nov., a thermophilic, methane-producing archaeon isolated from a Western Pacific deep-sea hydrothermal vent system. Int. J. Syst. Evol. Microbiol. 52: 1089-1095.
Teske, A., K. U. Hinrichs, V. Edgcomb, A. D. V. Gomez, D. Kysela, S. P. Sylva, M. L. Sogin and H. W. Jannasch. 2002. Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl. Environ. Microbiol. 68: 1994-2007.
Thauer, R. K., A. K. Kaster, H. Seedorf, W. Buckel and R. Hedderich. 2008. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6: 579-591.
Turner, S., K. M. Pryer, V. P. Miao and J. D. Palmer. 1999. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J. Eukaryot. Microbiol. 46: 327-338.
Utsumi, M., S. E. Belova, G. M. King and H. Uchiyama. 2003. Phylogentic comparison of methanogen diversity in different wetland soils. J. Gen. Appl. Microbiol. 49: 75-83.
van de Peer, Y., I. van den Broeck, P. de Rijk and R. de Wachter. 1994. Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res. 22:3488-94.
van Teeseling, M. C. F., A. Pol, H. R. Harhangi, S. van der Zwart, M. S. M. Jetten, H. J. M. O. den Camp and L. van Niftrik. 2014. Expanding the verrucomicrobial methanotrophic world: Description of three novel species of Methylacidimicrobium gen. nov. Appl. Environ. Microbiol. 80: 6782-6791.
Vetriani, C., H. W. Jannasch, B. J. MacGregor, D. A. Stahl and A. L. Reysenbach. 1999. Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediment. Appl. Environ. Microbial. 65: 4375-4384.
Vigneron, A., P. Cruaud, P. Pignet, J. C. Caprais, N. Gayet, M. A. Cambon-Bonavita, A. Godfroy and L. Tofiin. 2013. Bacterial communities and syntrophic associations involved in anaerobic oxidation of methane process of the Sonora Margin cold seeps, Guaymas Basin. Environ. Microbiol. doi:10.1111/ 1462-2920.12324.
Vigneron, A., S. L'Haridon, A. Godfroy, E. G. Roussel, B. A. Cragg, R. J. Parkes and L. Toffin. 2015. Evidence of active methanogen communities in shallow sediments of the sonora margin cold seeps. Appl Environ Microbiol. 81: 3451-9.
Wasserfallen, A., J. Nölling, P. Pfister, J. Reeve and M. E. Conway. 2000. Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. nov. Int. J. Syst. Evol. Microbiol. 50: 43-53.
Weber, H. S., K. S. Habicht and B. Thamdrup. 2017. Anaerobic methanotrophic archaea of the ANME-2d cluster are active in a low-sulfate, iron-rich freshwater sediment. Front. Microbiol. doi: 10.3389/fmicb.2017.00619. eCollection 2017.
Webster, G., J. R. Parkes, C. J. Fry and AJ. Weightman. 2004. Widespread occurrence of a novel division of bacteria identified by 16s rrna gene sequences originally found in deep marine sediments. Appl Environ Microbiol. 9: 5708-13.
Weidenbach, K. and L. Nickel, H. Neve, O. S. Alkhnbashi, S. Künzel, A. Kupczok, T. Bauersachs, L. Cassidy, A. Tholey, R. Backofen and R. A. Schmitz. 2017. Methanosarcina Spherical Virus, a Novel Archaeal Lytic Virus Targeting Methanosarcina Strains. J Virol. 91: e00955-17. https://doi.org/10.1128/JVI.00955-17.
Weng, C. Y., S. C. Chen, M. C. Lai, S. Y. Wu, S. Lin, T. F. Yang and P. C. Chen. 2015. Methanoculleus taiwanensis sp. nov., a methanogen isolated from deep marine sediment at the deformation front area near Taiwan. Int. J. Syst. Evol. Microbiol. 65: 1044-1049.
Whitman, W. B. and C. Jeanthon. 2006. The order Methanococcales. P.257-273., In M. Dworkin, S Falkow, E. Rosenberg, K. H. Schleifer, E. Stackebrandt (Eds.) In The Prokaryotes, 3rd edn. Springer-Verlag New York.
Wiedenheft, B., K. Zhou, M. Jinek, S. M. Coyle, W. Ma and J. A. Doudna. 2009. Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure. 17: 904-912.
Wildgruber, G., M. Thomm, H. Konig, K. Ober, T. Ricchiuto and K.O. Stetter. 1982. Methanoplanus limicola, a plateshaped methanogen representing a novel family, the Methanoplanaceae. Arch Microbiol. 132: 31-36.
Wilharm, T., M. Thomm, and K. Stetter. 1986. Genetic analysis of plasmid pMP1 from Methanolobus vulcani. Syst. Appl. Microbiol. 7: 401.
Wilkin, R. T. and L. H. Barnes. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. 1996. Geochimica et Cosmochimica Acta. 60: 4167-4179.
Woese, C. R., L. J. Magrum and G. E. Fox. 1978. Archaebacteria. J. Mol. Evol. 11: 245-252.
Wolin, E.A., M. J. Wolin and R. S. Wolfe. 1963. Formation of methane by bacterial extracts. J. Biol. Chem. 238: 2882-2886.
Wood, A. G., W. B. Whitman, and J. Konisky. 1989. Isolation and characterization of an archaebacterial viruslike particle from Methanococcus voltae A3. J. Bacteriol. 171: 93-98.
Wu S. Y. and M. C. Lai. 2011. Methanogenic archaea isolated from Taiwan's Chelungpu fault. Appl. Environ. Microbiol. 77: 830-838.
Wu, S. Y., S. C. Chen and M. C. Lai. 2005. Methanofollis formosanus sp. nov., isolated from a fish pond. Int. J. Syst. Evol. Microbiol. 55: 837-842.
Yanagawa, K., M. Kouduka, Y. Nakamura, A. Hachikubo, H. Tomaru, Y. Suzuki. 2013. Distinct microbial communities thriving in gas hydrate-associated sediments from the eastern Japan Sea. J Asian Earth Sci. 90: 243-249.
Yanagawa, K., M. Sunamura, M. A. Lever, Y. Morono, A. Hiruta, O. Ishizaki, R. Matsumoto, T. Urabe and F. Inagaki. 2011. Niche separation of methanotrophic archara (ANME-1 and -2) in methane-seep sediments of the Eastern Japan Sea Offshore Joetsu. Geomicrobiology J. 28: 118-129.
Yanagita, K., Y. Kamagata, M. Kawaharasaki, T. Suzuki, Y. Nakamura and H. Minato. 2000. Phylogenetic analysis of methanogens in sheep rumen ecosystem and detection of Methanomicrobium mobile by fluorescence in situ hybridization. Biosci. Biotechnol. Biochem. 64: 1737-1742.
Youssef, N. H., K. N. Ashlock-Savage and M. S. Elshahed. 2011. Phylogenetic diversities and community structure of members of the extremely halophilic archaea (order halobacteriales) in multiple saline sediment habitats Appl. Envi. Microbiol. 78: 1332-1344.
Zellner , G., C. Alten, E. Stackebrandt, E. Conway de Maeario and J. Winter. 1987. Isolation and characterization of Methanocorpusculum parvum, gen. nov., spec. nov., a new tungsten requiring, coccoid methanogen. Arch Microbiol. 147: 13-20.
Zellner, G., D. R. Boone, J. Keswani, W. B. Whitman, C. R. Woese, A. Hagelstein, B. J. Tindall, and E. Stackebrandt. 1999. Reclassification of Methanogenium tationis and Methanogenium liminatans as Methanofollis tationis gen. nov., comb. nov. and Methanofollis liminatans comb. nov. and description of a new strain of Methanofollis liminatans. Int. J. Syst. Bacteriol. 49: 247-255.
Zhang, G., N. Jiang, X. Liu and X. Dong. 2008. Methanogenesis from methanol at low temperatures by a novel psychrophilic methaMethanolobus psychrophilnogen, “us” sp. nov., prevalent in Zoige wetland of the Tibetan plateau. Appl. Environ. Microbiol. 74: 6114-6120.
Zhilina, T. N., D. G. Zavarzina, V. V. Kevbrina and T. V. Kolganova. 2013. Methanocalculus natronophilus sp nov., a new alkaliphilic hydrogenotrophic methanogenic archaeon from a soda lake, and proposal of the new family Methanocalculaceae. Microbiology. 82: 681-690.
Zhou, L., X. Liu1 and X. Dong. 2014. Methanospirillum psychrodurum sp. nov., isolated from wetland soil. Int. J. Syst. Evol. Microbiol. 64: 638-641.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊