|
[1] C. J. Koester and E. Snitzer, "Amplification in a Fiber Laser," Appl. Opt., vol. 3, pp. 1182-1186, 1964. [2] J. Stone and C. A. Burrus, "Neodymium-Doped Fiber Lasers: Room Temperature cw Operation with an Injection Laser Pump," Appl Opt, vol. 13, pp. 1256-8, 1974. [3] W. L. Barnes, S. B. Poole, J. E. Townsend, L. Reekie, D. J. Taylor, and D. N. Payne, "Er3+Yb3+and Er3+doped fiber lasers," Journal of Lightwave Technology, vol. 7, pp. 1461-1465, 1989. [4] J. Limpert, T. Clausnitzer, A. Liem, T. Schreiber, H. J. Fuchs, H. Zellmer, et al., "High-average-power femtosecond fiber chirped-pulse amplification system," Opt. Lett., vol. 28, pp. 1984-1986, 2003. [5] E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C. McCollum, "Double clad, offset core Nd fiber laser," in Optical Fiber Sensors, New Orleans, Louisiana, 1988, p. PD5. [6] R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE Journal of Quantum Electronics, vol. 33, pp. 1049-1056, 1997. [7] O. Pottiez, R. Grajales-Coutiño, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernández-García, "Adjustable noiselike pulses from a figure-eight fiber laser," Applied Optics, vol. 50, pp. E24-E31, 2011. [8] S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, "Generation of double-scale femto/pico-secondoptical lumps in mode-locked fiber lasers," Opt. Express, vol. 17, pp. 20707-20713, 2009. [9] Y. An, D. Shen, W. Zhao, and J. Long, "Characteristics of pulse evolution in mode-locked thulium-doped fiber laser," Optics Communications, vol. 285, pp. 1949-1953, 2012. [10] S. M. Kobtsev and S. V. Smirnov, "Fiber lasers mode-locked due to nonlinear polarization evolution: Golden mean of cavity length," Laser Physics, vol. 21, pp. 272-276, 2011. [11] L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen, "Noise-like pulse in a gain-guided soliton fiber laser," Optics Express, vol. 15, pp. 2145-2150, 2007. [12] M. Horowitz, Y. Barad, and Y. Silberberg, "Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser," Opt Lett, vol. 22, pp. 799-801, 1997. [13] A. Govind P, Application of Nonlinear Fiber Opitcs, 2nd ed.: Academic Press, 2008. [14] K. Lu and N. K. Dutta, "Spectroscopic properties of Yb-doped silica glass," Journal of Applied Physics, vol. 91, p. 576, 2002. [15] H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, et al., "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region," IEEE Journal of Selected Topics in Quantum Electronics, vol. 1, pp. 2-13, 1995. [16] N. P. Barnes and B. M. Walsh, "Amplified spontaneous emission-application to Nd:YAG lasers," Quantum Electronics, IEEE Journal of, vol. 35, pp. 101-109, 1999. [17] W. E. Lamb, Jr., "Theory of an Optical Maser," Physical Review, vol. 134, pp. A1429-A1450, 1964. [18] H. A. Haus, "Mode-locking of lasers," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 6, pp. 1173-1185, 2000. [19] L. E. Hargrove, R. L. Fork, and M. A. Pollack, "Locking of He-Ne laser modes induced by synchronous intracavity modulation," Applied Physics Letters, vol. 5, p. 4, 1964. [20] C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continuous-wave passive mode locking," J. Opt. Soc. Am. B, vol. 16, pp. 46-56, 1999. [21] A. K. Zaytsev, C. L. Wang, C. H. Lin, and C. L. Pan, "Robust diode-end-pumped Nd:GdVO4 laser passively mode-locked with saturable output coupler," Laser Physics, vol. 21, pp. 2029-2035, 2011. [22] V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation," Electronics Letters, vol. 28, pp. 1391-1393, 1992. [23] F. Shimizu, "Frequency Broadening in Liquids by a Short Light Pulse," Physical Review Letters, vol. 19, pp. 1097-1100, 1967. [24] S. A. Planas, N. L. Mansur, C. H. Cruz, and H. L. Fragnito, "Spectral narrowing in the propagation of chirped pulses in single-mode fibers," Opt Lett, vol. 18, pp. 699-701, 1993. [25] C. V. Raman and K. S. Krishnan, "A new type of secondary radiation," Nature, vol. 121, pp. 501-502, 1928. [26] R. H. Stolen, A. R. Tynes, and E. P. Ippen, "Raman Oscillation in Glass Optical Waveguide," Applied Physics Letters, vol. 20, pp. 62-64, 1972. [27] E. P. Ippen and R. H. Stolen, "Stimulated Brillouin-Scattering in Optical Fibers," Applied Physics Letters, vol. 21, pp. 539-&, 1972. [28] G. P. Agrawal, Nonlinear fiber optics, 4 ed.: Academic Press, 2007. [29] F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Physical Review Letters, vol. 92, p. 213902, 2004. [30] R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, "High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier," Optics Letters, vol. 37, pp. 1529-1531, 2012. [31] S. Smirnov, S. Kobtsev, S. Kukarin, and A. Ivanenko, "Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation," Optics Express, vol. 20, pp. 27447-27453, 2012. [32] D. Tang, L. Zhao, and B. Zhao, "Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser," Opt. Express, vol. 13, pp. 2289-2294, 2005. [33] L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen, "Noise-like pulse in a gain-guided soliton fiber laser," Opt. Express, vol. 15, pp. 2145-2150, 2007. [34] C. Aguergaray, A. Runge, M. Erkintalo, and N. G. R. Broderick, "Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability," Optics Letters, vol. 38, pp. 2644-2646, 2013. [35] A. K. Zaytsev, C. H. Lin, Y. J. You, F. H. Tsai, C. L. Wang, and C. L. Pan, "A controllable noise-like operation regime in a Yb-doped dispersion-mapped fiber ring laser," Laser Physics Letters, vol. 10, p. 045104, 2013. [36] H. Lim, F. Ö. Ilday, and F. W. Wise, "Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser," Optics Letters, vol. 28, pp. 660-662, 2003. [37] O. Pottiez, R. Grajales-Coutiño, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernández-García, "Adjustable noiselike pulses from a figure-eight fiber laser," Appl. Opt., vol. 50, pp. E24-E31, 2011. [38] A. Chong, J. Buckley, W. Renninger, and F. Wise, "All-normal-dispersion femtosecond fiber laser," Optics Express, vol. 14, pp. 10095-10100, 2006. [39] D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, "Pulse Repetition Rates in Passive, Selfstarting, Femtosecond Soliton Fiber Laser," Electronics Letters, vol. 27, pp. 1451-1453, 1991. [40] A. B. Grudinin, D. J. Richardson, and D. N. Payne, "Energy quantisation in figure eight fibre laser," Electronics Letters, vol. 28, pp. 67-68, 1992. [41] O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, "Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control," Optics Communications, vol. 269, pp. 156-165, 2007. [42] M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, "Environmentally stable picosecond Yb fiber laser with low repetition rate," Applied Physics B, vol. 111, pp. 39-43, 2013. [43] B. Orta, M. Plötner, T. Schreiber, J. Limpert, and A. Tünnermann, "Experimental and numerical study of pulse dynamics in positive net-cavity dispersion modelocked Yb-doped fiber lasers," Optics Express, vol. 15, pp. 15595-15602, 2007. [44] A. B. Grudinin, D. J. Richardson, and D. N. Payne, "Passive harmonic modelocking of a fibre soliton ring laser," Electronics Letters, vol. 29, pp. 1860-1861, 1993. [45] A. A. M. Saleh, R. M. Jopson, J. D. Evankow, and J. Aspell, "Modeling of Gain in Erbium-Doped Fiber Amplifiers," Ieee Photonics Technology Letters, vol. 2, pp. 714-717, 1990. [46] C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, "Analytical Model for Rare-Earth-Doped Fiber Amplifiers and Lasers," IEEE Journal of Quantum Electronics, vol. 30, pp. 1817-1830, 1994. [47] T. Pfeiffer and H. Bulow, "Analytical Gain Equation for Erbium-Doped Fiber Amplifiers Including Mode Field Profiles and Dopant Distribution," IEEE Photonics Technology Letters, vol. 4, pp. 449-451, 1992. [48] S.-S. Lin, S.-K. Hwang, and J.-M. Liu, "Supercontinuum generation in highly nonlinear fibers using amplified noise-like optical pulses," Optics Express, vol. 22, pp. 4152-4160, 2014. [49] S. H. Saeid, "Computer simulation and performance evaluation of single mode fiber optics," in Proceedings of the World Congress on Engineering, 2012. [50] J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Reviews of Modern Physics, vol. 78, pp. 1135-1184, 2006. [51] K. Bizheva, B. Pova?ay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, et al., "Compact, broad-bandwidth fiber laser for sub-2-?m axial resolution optical coherence tomography in the 1300-nm wavelength region," Optics Letters, vol. 28, pp. 707-709, 2003. [52] S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, et al., "Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb," Physical Review Letters, vol. 84, pp. 5102-5105, 2000. [53] L. Boivin and B. C. Collings, "Spectrum Slicing of Coherent Sources in Optical Communications," Optical Fiber Technology, vol. 7, pp. 1-20, 2001. [54] R. R. Alfano and S. L. Shapiro, "Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses," Physical Review Letters, vol. 24, pp. 592-594, 1970. [55] W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H. J. Weigmann, and C. D. Thuy, "An anomalous frequency broadening in water," Optics Communications, vol. 4, pp. 413-415, 1972. [56] P. B. Corkum, P. P. Ho, R. R. Alfano, and J. T. Manassah, "Generation of infrared supercontinuum covering 3–14 μm in dielectrics and semiconductors," Optics Letters, vol. 10, pp. 624-626, 1985. [57] P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, "Supercontinuum Generation in Gases," Physical Review Letters, vol. 57, pp. 2268-2271, 1986. [58] C. Lin and R. H. Stolen, "New nanosecond continuum for excited‐state spectroscopy," Applied Physics Letters, vol. 28, pp. 216-218, 1976. [59] S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, "Supercontinuum self-Q-switched ytterbium fiber laser," Opt Lett, vol. 22, pp. 298-300, 1997. [60] J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Optics Letters, vol. 25, pp. 25-27, 2000. [61] X. Limin, M. S. Demokan, J. Wei, W. Yiping, and Z. Chun-liu, "Fusion Splicing Photonic Crystal Fibers and Conventional Single-Mode Fibers: Microhole Collapse Effect," Lightwave Technology, Journal of, vol. 25, pp. 3563-3574, 2007. [62] R. S. Watt, C. F. Kaminski, and J. Hult, "Generation of supercontinuum radiation in conventional single-mode fibre and its application to broadband absorption spectroscopy," Applied Physics B, vol. 90, pp. 47-53, 2008. [63] H. W. Chen, Y. Lei, S. P. Chen, J. Hou, and Q. S. Lu, "Experimentally investigate the nonlinear amplifying process of high power picoseconds fiber amplifier," Optics and Laser Technology, vol. 47, pp. 278-282, 2013. [64] P. H. Pioger, V. Couderc, P. Leproux, and P. A. Champert, "High spectral power density supercontinuum generation in a nonlinear fiber amplifier," Optics Express, vol. 15, pp. 11358-11363, 2007. [65] H. Pourbeyram, G. P. Agrawal, and A. Mafi, "Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber," Applied Physics Letters, vol. 102, p. 201107, 2013. [66] K. Yin, B. Zhang, W. Yang, H. Chen, and J. Hou, "Over an octave cascaded Raman scattering in short highly germanium-doped silica fiber," Optics Express, vol. 21, pp. 15987-15997, 2013. [67] H. Sayinc, K. Hausmann, U. Morgner, J. Neumann, and D. Kracht, "Picosecond all-fiber cascaded Raman shifter pumped by an amplified gain switched laser diode," Optics Express, vol. 19, pp. 25918-25924, 2011. [68] J. C. Hernandez-Garcia, O. Pottiez, and J. M. Estudillo-Ayala, "Supercontinuum generation in a standard fiber pumped by noise-like pulses from a figure-eight fiber laser," Laser Physics, vol. 22, pp. 221-226, 2012. [69] A. Zaytsev, C.-H. Lin, Y.-J. You, C.-C. Chung, C.-L. Wang, and C.-L. Pan, "Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers," Optics Express, vol. 21, pp. 16056-16062, 2013. [70] J. M. D. a. J. R. Taylor, Supercontinuum generation in optical fibers: Cambridge University Press, 2010. [71] J. Santhanam and G. P. Agrawal, "Raman-induced spectral shifts in optical fibers: general theory based on the moment method," Optics Communications, vol. 222, pp. 413-420, 2003. [72] I. Ilev, H. Kumagai, K. Toyoda, and I. Koprinkov, "Highly efficient wideband continuum generation in a single-mode optical fiber by powerful broadband laser pumping," Appl Opt, vol. 35, pp. 2548-53, 1996. [73] T. Kato, Y. Suetsugu, and M. Nishimura, "Estimation of nonlinear refractive index in various silica-based glasses for optical fibers," Optics Letters, vol. 20, pp. 2279-2281, 1995. [74] K. J. Blow and D. Wood, "Theoretical Description of Transient Stimulated Raman-Scattering in Optical Fibers," IEEE Journal of Quantum Electronics, vol. 25, pp. 2665-2673, 1989. [75] K. Rottwitt and J. H. Povlsen, "Analyzing the fundamental properties of Raman amplification in optical fibers," Lightwave Technology, Journal of, vol. 23, pp. 3597-3605, 2005. [76] V. Brückner, "Basics and practice of optical data communication," in Elements of Optical Networking, ed: Vieweg+Teubner Verlag, Springer, 2011. [77] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, et al., "Optical coherence tomography," Science, vol. 254, pp. 1178-81, 1991. [78] A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, "In Vivo Optical Coherence Tomography," American Journal of Ophthalmology, vol. 116, pp. 113-114, 1993. [79] E. A. Swanson, J. A. Izatt, C. P. Lin, J. G. Fujimoto, J. S. Schuman, M. R. Hee, et al., "In vivo retinal imaging by optical coherence tomography," Optics Letters, vol. 18, pp. 1864-1866, 1993. [80] J. A. Izatt and M. A. Choma, "Theory of Optical Coherence Tomography," in Optical Coherence Tomography, W. Drexler and J. Fujimoto, Eds., ed: Springer Berlin Heidelberg, 2008, pp. 47-72. [81] A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Optics Communications, vol. 117, pp. 43-48, 1995. [82] M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," Journal of Biomedical Optics, vol. 7, pp. 457-463, 2002. [83] J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Optics Letters, vol. 28, pp. 2067-2069, 2003. [84] R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Optics Express, vol. 11, pp. 889-894, 2003. [85] I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, et al., "Ultrahigh-resolution optical coherence tomography using continuum generation in an air?silica microstructure optical fiber," Optics Letters, vol. 26, pp. 608-610, 2001. [86] V. M. Kodach, J. Kalkman, D. J. Faber, and T. G. van Leeuwen, "Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm," Biomedical Optics Express, vol. 1, pp. 176-185, 2010. [87] H. Lim, Y. Jiang, Y. Wang, Y.-C. Huang, Z. Chen, and F. W. Wise, "Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 µm," Optics Letters, vol. 30, pp. 1171-1173, 2005. [88] S. Ishida, N. Nishizawa, T. Ohta, and K. Itoh, "Ultrahigh-Resolution Optical Coherence Tomography in 1.7 µm Region with Fiber Laser Supercontinuum in Low-Water-Absorption Samples," Applied Physics Express, vol. 4, p. 052501, 2011. [89] M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300‐nm ring laser source," Journal of Biomedical Optics, vol. 10, pp. 044009-044009-6, 2005. [90] X. Hu, W. Zhang, Z. Yang, Y. Wang, W. Zhao, X. Li, et al., "High average power, strictly all-fiber supercontinuum source with good beam quality," Optics Letters, vol. 36, pp. 2659-2661, 2011. [91] C. Hongwei, C. Zilun, C. Shengping, H. Jing, and L. Qisheng, "Hundred-Watt-Level, All-Fiber-Integrated Supercontinuum Generation from Photonic Crystal Fiber," Applied Physics Express, vol. 6, p. 032702, 2013. [92] S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, "Generation of double-scale femto/pico-secondoptical lumps in mode-locked fiber lasers," Optics Express, vol. 17, pp. 20707-20713, 2009. [93] S. Smirnov, S. Kobtsev, S. Kukarin, and A. Ivanenko, "Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation," Opt. Express, vol. 20, pp. 27447-27453, 2012. [94] C. Lecaplain and P. Grelu, "Rogue waves among noiselike-pulse laser emission: An experimental investigation," Physical Review A, vol. 90, p. 013805, 2014. [95] Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, "On the formation of noise-like pulses in fiber ring cavity configurations," Optical Fiber Technology, vol. 20, pp. 575-592, 2014. [96] S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength," Optics Express, vol. 11, pp. 3598-3604, 2003. [97] Z. Yaqoob, J. Wu, and C. Yang, "Spectral domain optical coherence tomography: a better OCT imaging strategy," Biotechniques, vol. 39, p. 0, 2005. [98] M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Optics express, vol. 12, pp. 2404-2422, 2004. [99] B. Cense, N. Nassif, T. Chen, M. Pierce, S.-H. Yun, B. Park, et al., "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Optics Express, vol. 12, pp. 2435-2447, 2004. [100] S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Optics Letters, vol. 22, pp. 340-342, 1997. [101] B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, "Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser," Optics Letters, vol. 22, pp. 1704-1706, 1997. [102] U. H. P. Haberland, V. Blazek, and H. J. Schmitt, "Chirp Optical Coherence Tomography of Layered Scattering Media," Journal of Biomedical Optics, vol. 3, pp. 259-266, 1998. [103] S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, "High-speed optical frequency-domain imaging," Optics Express, vol. 11, pp. 2953-2963, 2003. [104] K. Goda, K. K. Tsia, and B. Jalali, "Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena," Nature, vol. 458, pp. 1145-1149, 2009. [105] J. Chou, D. R. Solli, and B. Jalali, "Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation," Applied Physics Letters, vol. 92, p. 111102, 2008. [106] T. T. Wong, A. K. Lau, K. K. Wong, and K. K. Tsia, "Optical time-stretch confocal microscopy at 1 µm," Opt Lett, vol. 37, pp. 3330-2, 2012. [107] S. Moon and D. Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Optics Express, vol. 14, pp. 11575-11584, 2006. [108] T. Huo, J. Zhang, J.-g. Zheng, T. Chen, C. Wang, N. Zhang, et al., "Linear-in-wavenumber swept laser with an acousto-optic deflector for optical coherence tomography," Optics Letters, vol. 39, pp. 247-250, 2014. [109] S. H. Xiang, L. Zhou, and J. M. Schmitt, "Speckle noise reduction for optical coherence tomography," 1998, pp. 79-88. [110] M. FranÇOn, "CHAPTER VIII - Speckle in Astronomy," in Laser Speckle and Applications in Optics, M. FranÇOn, Ed., ed: Academic Press, 1979, pp. 111-120. [111] M. FranÇOn, "CHAPTER X - Various Applications of Speckle," in Laser Speckle and Applications in Optics, M. FranÇOn, Ed., ed: Academic Press, 1979, pp. 133-147. [112] J. W. Goodman, "Some fundamental properties of speckle," Journal of the Optical Society of America, vol. 66, pp. 1145-1150, 1976. [113] J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in Optical Coherence Tomography," Journal of Biomedical Optics, vol. 4, pp. 95-105, 1999. [114] S. M. Gehlbach and F. G. Sommer, "Frequency Diversity Speckle Processing," Ultrasonic Imaging, vol. 9, pp. 92-105, 1987. [115] Y. Du, G. Liu, G. Feng, and Z. Chen, "Speckle reduction in optical coherence tomography images based on wave atoms," J Biomed Opt, vol. 19, p. 056009, 2014.
|