跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.107) 您好!臺灣時間:2025/12/18 06:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅佳玲
研究生(外文):LO,CHIA-LING
論文名稱:一個全局和局部特徵轉移學習方法於害蟲出現頻率
論文名稱(外文):An Entire-and-Partial Feature Transfer Learning Approach for Pest Occurrence Frequency
指導教授:陳裕賢陳裕賢引用關係
指導教授(外文):CHEN,YUH-SHYAN
口試委員:陳宗禧莊東穎許智舜張志勇陳裕賢
口試委員(外文):CHEN,TZUNG-SHIJUANG,TONG-YINGHSU,JHIH-SHUNCHANG,CHIH-YUNGCHEN,YUH-SHYAN
口試日期:2019-07-31
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:38
中文關鍵詞:局部特徵轉移學習跨層害蟲發生頻率全局和局部特徵多任務學習
外文關鍵詞:partial-feature transfer learningcross-layerfrequency of pest occurrencesentire-and partial featuremulti-task learning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
害蟲發生的頻率一直是農業時間和勞動的任務。本文試圖通過深度學習與農業的結合來解決上述問題。我們提出了一種全部和部分特徵轉移學習方案來進行有害生物檢測,分類和計數,以提供有害生物發生頻率的結果。在部分特徵轉移學習中,部分特徵轉移學習的細粒度特徵圖用於加強整個特徵轉移學習。最後,對整個特徵轉移學習使用權重方案加強了不同的細粒度特徵映射,並將整個特徵網絡的跨層與多尺度特徵映射相結合。整體特徵轉移學習方法通過使用跨層機制創建快捷拓撲來減少梯度消失問題來增強特徵。實驗結果表明,整體和部分特徵轉移學習機制的檢測和分類可以得到顯著改善,該方法可以達到90.2%。
The frequency of pest occurrence has always been a task of agricultural time and labor. This paper attempts to solve the above problems through the combination of deep learning and agriculture. We propose an entire-and-partial feature transfer learning scheme to perform pest detection, classification and counting, to offer the result of pest occurrence frequency.
In the partial-feature transfer learning, the fine-grained feature map of the partial-feature transfer learning is used to strengthened the entire-feature transfer learning.
Finally, different fine-grained feature map are strengthened to the entire-feature transfer learning use weight scheme and the cross-layer of the entire-feature network is combined with multi-scale feature map. The entire-feature transfer learning approach enhances the feature by creating a shortcut topology using cross layer mechanism to reduce the gradient disappearance problem.
The experimental results shows that the detection and classification of the entire-and partial feature transfer learning mechanism can be significantly improved, and the method can reach 90.2%.

1 Introduction1
2 RelatedWorks5
2.1 RelatedWorks.................................... 5
2.2 Motivation...................................... 7
3 Preliminaries8
3.1 Systemmodel.................................... 8
3.2 ProblemFormulation................................ 9
3.3 BasicIdea...................................... 11
4 AnEntire-and-PartialFeatureTransferLearningApproachforPestOccur-
rence Frequency13
4.1 Entire-and-Partialfeaturelearningphase..................... 15
4.2 Partial-featuretransferringphase......................... 17
4.3 Entire-featuretransferringphase.......................... 20
4.4 Pestdetectionandclassi cationphase...................... 22
5 Simulationresult24
5.1 Averageprecision(AP)............................... 26
5.2 Recall........................................ 27
5.3 Trainingloss..................................... 30
5.4 Classaccuracy.................................... 30
5.5 CDF......................................... 32
6 Conclusions34
6.1 Acknowledgments.................................. 34
[1] J. Cho,J.Choi,M.Qiao,C.Ji,andK.H.Y,"AutomaticIdenti cationofWhite
ies,
Aphids andThripsinGreenhousebasedonImageAnalysis", International Journalof
Mathematics andComputersinSimulation, vol.1,no.1,pp.46{53.
[2] H. Gassoumi,N.Prasad,andJ.Ellington,"Neuralnetwork-basedApproachforInsect
Classi cation inCottonEcosystems",in ProceedingsofInternationalConferenceonIn-
telligentTechnologies, pp.1{7,Thailand,Jan.2007.
[3] K.VakilianandJ.Massah,"PerformanceEvaluationofaMachineVisionSystemfor
Insect PestsIdenti cationofFieldCropsusingArti cialNeuralNetworks", Archivesof
PhytopathologyandPlantProtection, vol.46,no.11,pp.1262{1269.
[4] J. Wang,C.Lin,L.Ji,andA.Liang,"ANewAutomaticIdenti cationSystemofInsect
Images attheOrderLevel", Knowledge-basedSystems, vol.33,no.1,pp.102{110.
[5] S. Kang,S.Song,andS.Lee,"Identi cationofButter
ySpecieswithaSingleNeural
NetworkSystem", Journal ofAsia-paci cEntomology, vol.15,no.3,pp.431{435.
[6] C.WenandD.Guyer,"Image-basedOrchardInsectAutomatedIdenti cationandClassi-
cation Method", Computers andElectronicsinAgriculture, vol.89,no.10,pp.110{115.
[7] Y.KayaandL.Kayci,"ApplicationofArti cialNeuralNetworkforAutomaticSetection
of Butter
ySpeciesUsingColorandTexturefeatures", The VisualComputer, vol.30,
no. 1,pp.71{79.
35
[8] W. DingandG.Taylor,"AutomaticMothSetectionfromTrapImagesforPestManage-
ment", Computers andElectronicsinAgriculture, vol.123,pp.17{28.
[9] N. ArdandH.S.J.Hemming,"DetectionandClassi cationofInsectsonStick-trapsin
a TomatoCropUsingFasterR-CNN",in ProceedingsoftheNetherlandsConferenceon
Computer Vision, pp.1{4,Eindhoven,Jan.2018.
[10] X. Chengjun,W.Rujing,andZ.Jie,"Multi-levelLearningFeaturesforAutomaticClas-
si cation ofFieldCropPests", Computers andElectronicsinAgriculture, vol.152,no.7,
pp. 152{156.
[11] H. J.Muhammad,N.M.Humair,andY.K.Babar,"K-meansbasedAutomaticPests
Detection andClassi cationforPesticidesSpraying", International JournalofAdvanced
Computer ScienceandApplications, vol.8,no.11,pp.174{176.
[12] K. G.Liakos,P.Busato,D.Moshou,S.Pearson,andD.Bochtis,"MachineLearning
in Agriculture:AReview", Computers andElectronicsinAgriculture, vol.18,no.8,
pp. 2674{2678.
[13] Y. Zhong,Q.L.JunyuanGao,andY.Zhou,"AVision-basedCountingandRecognition
System forFlyingInsectsinIntelligentAgriculture", Sensors, vol.18,no.5,pp.234{240.
[14] L. Deng,Y.Wang,andZ.H.R.Yu,"ResearchonInsectPestImageDetectionand
Recognition basedonBio-inspiredMethods", Biosystems Engineering, vol.169,no.6,
pp. 139{142.
[15] J. Redmon,S.Divvala,R.Girshick,andA.Farhadi,"YouOnlyLookOnce:Uni ed,
Real-time ObjectDetection",in ProceedingsofComputerVisionandPatternRecognition,
pp. 2{4,LasVegas,NV,USA,June.2016.
36
[16] P.Mohammad,S.Sherine,N.M.Sharon,andM.A.L,"ACluster-then-labelSemi-
supervisedLearningApproachforPathologyImageClassi cation", Scienti c Reports,
vol.8,no.1,pp.2{4.
[17] D. Motta,A.lissonBandeiraSantos,I.Winkler,B.A.S.Machado,andD.A.D.I.Pereira,
"Application ofConvolutionalNeuralNetworksforClassi cationofAdultMosquitoesin
the Field", Public LibraryofScience, vol.14,no.1,pp.1{18.
[18] S. LeeandW.Kim,"SentimentlabelingforExtendingInitialLabeledDatatoImprove
Semi-supervisedSentimentClassi cation", ElectronicCommerceResearchandApplica-
tions, vol.26,no.6,pp.35{43.
[19] M. Ebrahimi,M.Khoshtaghaza,S.Minaei,andB.Jamshidi,"Vision-basedPestDetec-
tion basedonSVMClassi cationMethod", Computers andElectronicsinAgriculture,
vol.137,pp.52{58.
[20] K. L.Roldn-Serrato,J.Escalante-Estrada,andM.Rodrguez-Gonzlez,"AutomaticPest
Detection onBeanandPotatoCropsbyApplyingNeuralClassi ers", Engineeringin
Agriculture, vol.11,no.4,pp.245{255.
[21] A. Nazri,N.Mazlan,andF.Muharam,"AutomatedBrownPlanthopperDetectionfrom
ImperfectStickyPadImagesUsingDeepConvolutionalNeuralNetwork", Public Library
of Science, vol.13,no.2,pp.1{13.
[22] J. Liu,D.Han,andY.Yang,"PestIdenti cationbasedonMultipleClassi erSystem",
in ProceedingsofChineseControlConference(CCC), pp.5{7,Wuhan,July.2018.
[23] P.C.D.Xia,J.Z.BWang,andC.Xie,"InsectDetectionandClassi cationBasedonan
ImprovedConvolutionalNeuralNetwork", Sensors, vol.18,no.12,pp.4169{4181.
[24] T. B.Remboski,W.D.deSouza,M.S.deAguiar,andP.R.F.Jr,"Identi cationof
FruitFlyinIntelligentTrapsUsingTechniquesofDigitalImageProcessingandMachine
37
Learning", in ProceedingsofACM33rdAnnualACMSymposiumonAppliedComputing,
pp. 260{267,Pau,France,April.2018.
[25] Z. Liu,G.Zhang,M.S.HaiyingYang,H.Dang,andX.Zhou,"ApplicationofObject
Detection AlgorithminIdenti cationofRiceWeevilsandMaizeWeevils",in Proceedings
of InternationalConferenceonDeepLearningTechnologies, pp.76{80,Chongqing,June.
2018.
[26] Y. Shen,H.Zhou,J.Li,F.Jian,andD.S.Jayas,"DetectionofStored-grainInsectsUsing
Deep Learning", Computers andElectronicsinAgriculture, vol.145,no.4,pp.319{325.
[27] N. Murali,J.Schneider,J.Levine,andG.Taylor,"Classi cationandRe-identi cationof
FruitFlyIndividualsAcrossDayswithConvolutionalNeuralNetworks",in Proceedings
of WinterConferenceonApplicationsofComputerVision(WACV), pp.7{11,Waikoloa
Village, HI,USA,USA,Jan.2019.
[28] M. Lin,Sheng,W.sheng,andL.Jie,"APestsImageClassi cationMethodbasedon
ImprovedWolfPackAlgorithmtoOptimizeBayesianNetworkStructureLearning",
38
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 基於混合LSTM-CNN 學習預測土壤濕度的LoRaWAN 農業灌溉系統
2. 一個迭代式核心結合梯度下降之學習方法於窄帶物聯網的戶外定位
3. 一個獨立的人工智慧邊緣平台建構於具深度學習的迷你電腦和速食點餐推薦系統
4. C銀行消費信貸電銷之研究
5. 電動車產業上中下游外溢效果之研究 –國家品質獎 S 公司為例
6. 根基於區塊鏈資料廣播之轉送節點指派演算法研究
7. 散戶與法人在盈餘宣告前後 交易行為及報酬之研究
8. 一個在區塊鏈投票機制下之改良式共識協定並使用Chord與漣漪效應策略
9. 臺灣太陽能發電之政策可行性與成本效益評估
10. 金融危機對壽險業傳導效應之研究
11. 政治王朝對菲律賓地區財政績效評估的影響
12. 基於深度學習與自然語言處理發展的情感對話機器人-以短文本情感對話生成為例
13. 一個少量樣本遷移學習方法之條預測使用 一個少量樣本遷移學習方法之條預測使用 一個少量樣本遷移學習方法之條預測使用 一個少量樣本遷移學習方法之條預測使用 一個少量樣本遷移學習方法之條預測使用 一個少量樣本遷移學習方法之條預測使用 一個少量樣本遷移學習方法之條預測使用 文本和 具有 法律屬性的嵌入標籤 法律屬性的嵌入標籤 法律屬性的嵌入標籤
14. 關係中自立? 受暴婦女脫離親密關係暴力後自主生活歷程之研究
15. 球迷知覺企業社會責任及行為意圖之影響:形象、認同及負面公關的角色