跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 08:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:褚聖豪
研究生(外文):Sheng Hao Chu
論文名稱:不同操作電流對非質子型鋰空氣一次和二次電池的性能影響
論文名稱(外文):Effect of operating current on electrochemical performance of primary and rechargeable aprotic lithium-air batteries
指導教授:呂幸江
指導教授(外文):S. J. Lue
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:111
中文關鍵詞:鋰空氣電池非質子系統操作電流電化學檢測
外文關鍵詞:Lithium air batteryAprotic systemOperating currentElectrochemical detection
相關次數:
  • 被引用被引用:1
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鋰空氣電池使用鋰金屬陽極,陰極反應所需的氧氣擷取自外界空氣中,因此減少電池本身的重量,提升電池的重量能量密度,為目前理論能量密度最接近石油的替代性能源,在越來越依賴石油能源的世代,需要一個潔淨的替代性能源載體。
本研究中使用非質子型系統(aprotic system)來研究,含PTFE疏水層的碳布作為陰極基材,配合白金觸媒及1 M LiTFSI(tetaglyme)作為電解液,比較不同操作電流對電池性能的影響並進行電化學性質的檢測分析及陰極沉積物分析,首先研究PTFE疏水層不同分佈方式之影響,其中以疏水層位於鋰金屬端而白金觸媒分佈於空氣端較佳的組裝方式,在0.2 mA電流下能達到28個放電電容量2000 mAh/g-catalyst的循環且能量效率在28個循環中皆維持在64 %以上;長期放電測試,在0.2 mA電流下,放電時間為98小時,放電電容量為37886 mAh/g-catalyst,鋰金屬的利用率為24%。陰極主要放電沉積物為碳酸鋰(Li2CO3),且放電沉積物會隨著操作時間增加而增加,其形狀大小會隨著電流的增加而變小。
Lithium-air battery is a good potential energy storage devices that uses oxidation of lithium at the anode and reduction of oxygen at the cathode. A high energy density is achieved by utilizing the oxygen in air, reducing the weight of the battery. The theoretical specific energy densities for lithium-air batteries are closest to gasoline.
This study uses the lithium-air battery aprotic system to test electrochemical performance of primary and rechargeable batteries at different operating currents. We compare the configuration of MPL coated cathode. The results suggested that the MPL adjacent to Li side and catalyst facing air side has best performance. It can achieve 28 cycles and 2000 mAh/g-catalyst+C at 0.2mA current. At the current of 0.2mA results in 98 hours in long-term discharge test, It achieves discharge capacity of 37886 mAh/g-catalyst+C. The main discharge deposits on cathode consist of Li2CO3. The discharge Li2CO3 deposits increased with operating time. The deposits shape varies with the discharge current and decreases with higher current.
目錄
指導教授推薦書
論文口試委員會審定書
致謝 iii
中文摘要 iv
Abstract v
目錄 vi
圖目錄 viii
表目錄 xiii
第一章 前言 1
第二章 文獻回顧 2
2.1 能源與儲能 2
2.2 儲能技術簡介 4
2.3 鋰空氣電池 7
2.3.1 非質子系統(aprotic electrolyte system) 10
2.3.2 水相系統(aqueous electrolyte system) 11
2.3.3 固態系統(solid electrolyte system) 12
2.3.4 混合系統(mixed aprotic/aqueous electrolyte system) 12
2.4 非質子鋰空氣電池結構 14
2.4.1空氣電極與觸媒 15
2.4.2非質子電解液 19
2.5 影響鋰空氣電池性能的因素 21
2.6 研究目標 23
第三章 實驗方法 24
3.1 實驗藥品 24
3.2 儀器與設備 25
3.3 電池各組成製備 27
3.3.1 空氣陰極製備 27
3.3.2 非質子電解液製備 27
3.4電池封裝與電池測試 28
3.5 電池陰極之分析 30
第四章 結果與討論 31
4.1 電池再現性之測試 31
4.2 電池性能分析 39
4.2.1 空氣陰極中MPL位置對循環充放電性能的影響 39
4.2.2 一次放電的電池性能 57
4.2.3 不同電流下的陰極沉積物分析 68
第五章 結論 81
參考文獻 83


圖目錄
圖 1:世界主要能源市場需求趨勢圖[1] 3
圖 2:各類電池與汽油的能量密度比較圖[22] 8
圖 3:四種不同類型之鋰空氣電池系統示意圖。(a)水相(b)非質子(c)混合(d)固態電解質[23] 9
圖 4:IBM開發的鋰空氣電池結構圖[43] 14
圖 5:鋰空氣電池充放電示意圖[44] 15
圖 6: 鈀、白金、釕、金和玻璃碳對氧還原反應曲線[62] 18
圖 7:使用等效電路擬合之Nyquist圖[89] 29
圖 8:電池功率密度分析比較[41] 30
圖 9:不同日期製作的電池充放電測試前阻抗之再現性:(a)MPL-Li片 (b) MPL-air 33
圖 10:不同日期製作的電池放電電壓曲線之再現性:(a)MPL-Li片 (b) MPL-air 35
圖 11:不同日期製作的電池功率密度曲線之再現性:(a)MPL-Li片 (b) MPL-air 37
圖 12:用0.2 mA充放電測試前交流阻抗分析圖:(a)MPL-Li片 (b) MPL-air 39
圖 13:用0.2 mA充放電測試前放電電壓和功率密度曲線圖:(a)MPL-Li片 (b) MPL-air 40
圖 14:用0.2 mA對不同MPL位置的電池循環壽命及電池放電容量分析圖: (a)MPL-Li片 (b) MPL-air 42
圖 15:用0.2 mA對不同MPL位置的電池充放電曲線圖及能量效率分析圖: (a)MPL-Li片 (b) MPL-air 43
圖 16:用0.2 mA充放電測試後交流阻抗對時間變化分析圖(左)Rb阻抗對時間變化(右)Rct阻抗對時間變化:(a)MPL-Li片 (b) MPL-air 44
圖 17:用0.2 mA充放電測試後放電電壓和功率密度曲線圖:(a)MPL-Li片 (b) MPL-air 45
圖 18:用0.1 mA充放電測試前交流阻抗分析圖:(a)MPL-Li片 (b) MPL-air 46
圖 19:用0.1 mA充放電測試前放電電壓和功率密度曲線圖:(a)MPL-Li片 (b) MPL-air 47
圖 20:用0.1 mA電池循環壽命及電池放電容量分析圖: (a)MPL-Li片 (b)MPL-air 49
圖 21:用0.1 mA對不同MPL位置的電池充放電曲線圖及能量效率分析圖: (a)MPL-Li片 (b) MPL-air 51
圖 22:用0.1 mA充放電測試後交流阻抗對時間變化分析圖(左)Rb阻抗對時間變化(右)Rct阻抗對時間變化: (a)MPL-Li片 (b) MPL-air 53
圖 23:用0.1 mA充放電測試後放電電壓和功率密度曲線圖:(a)MPL-Li片 (b) MPL-air 54
圖 24:電池陰極充放電循環測試後之顯微拉曼光譜分析:(a)近空氣端-碳布(b)近鋰片端-MPL 56
圖 25:陰極組態(a)的鋰空氣電池用0.2 mA充放電測試前之(a)交流阻抗分析圖及(b)放電電壓和功率密度曲線圖 57
圖 26:陰極組態(a)的鋰空氣電池用0.2 mA連續長期放電及充電至4.5 V分析圖 58
圖 27:陰極組態(a)的鋰空氣電池用0.2 mA長期放電測試之交流阻抗對時間變化分析圖 59
圖 28:陰極組態(a)的鋰空氣電池用0.2 mA初始長期放電86小時及回充1.5小時測試之放電電壓和功率密度曲線圖 60
圖 29:重覆測試陰極組態(a)的鋰空氣電池用0.2 mA充放電測試前之(a)交流阻抗分析圖及(b)放電電壓和功率密度曲線圖 60
圖 30:重覆測試陰極組態(a)的鋰空氣電池用0.2 mA連續長期放電及充電至4.5 V分析圖 61
圖 31:重覆測試陰極組態(a)的鋰空氣電池用0.2 mA長期放電測試之交流阻抗對時間變化分析圖 62
圖 32:重覆測試陰極組態(a)的鋰空氣電池用0.2 mA長期放電測試之放電電壓和功率密度曲線圖 63
圖 33:陰極組態(a)的鋰空氣用0.1 mA充放電測試前之(a)交流阻抗分析圖及(b)放電電壓和功率密度曲線圖 64
圖 34:陰極組態(a)的鋰空氣電池用0.1 mA連續長期放電及充電至4.5 V分析圖 65
圖 35:陰極組態(a)的鋰空氣電池用0.1 mA長期放電測試之交流阻抗對時間變化分析圖 67
圖 36:陰極組態(a)的鋰空氣電池用0.1 mA長期放電測試之放電電壓和功率密度曲線圖 67
圖 37:陰極組態(a)的鋰空氣電池測試前之(a)交流阻抗分析圖及(b)放電電壓和功率密度曲線圖: MPL-Li片 68
圖 38:陰極組態(a)的鋰空氣電池之不同電流連續放電分析圖 69
圖 39:陰極組態(a)的鋰空氣電池不同電流連續放電後之交流阻抗對時間變化分析圖 70
圖 40:陰極組態(a)的鋰空氣電池不同電流連續放電後之放電電壓和功率密度曲線圖 71
圖 41:陰極組態(a)的鋰空氣電池不同電流在不同操作時間下之連續放電分析圖:(a) 0.1 mA (b) 0.2 mA (c) 0.5 mA; (d)不同電流之電壓對放電容量圖 72
圖 42:MPL面向鋰片端而觸媒分布於空氣端之電池陰極測試前表面形貌:(a)鋰片端100倍 (b)鋰片端1000倍 (c)鋰片端5000倍 (d)有觸媒空氣端100倍 (e)空氣端1000倍 (f)空氣端5000倍 (g)無觸媒空氣端100倍 (h)無觸媒空氣端1000倍 (i)無觸媒空氣端5000倍 74
圖 43:不同電流採取放電容量1000 mAhg-1-catalyst之電池陰極空氣端測試後:(a)0.1 mA鋰片端1000倍,插圖5000倍 (b)0.2 mA鋰片端1000倍,插圖5000倍 (c)0.5 mA鋰片端1000倍,插圖5000倍 (d)0.1 mA空氣端1000倍,插圖5000倍 (e)0.2 mA空氣端1000倍,插圖5000倍 (f)0.5 mA空氣端1000倍,插圖5000倍 75
圖 44:不同電流採取放電容量5000 mAhg-1-catalyst之電池陰極鋰片端測試後:(a)0.1 mA鋰片端1000倍,插圖5000倍 (b)0.2 mA鋰片端1000倍,插圖5000倍 (c)0.5 mA鋰片端1000倍,插圖5000倍 (d)0.1 mA空氣端1000倍,插圖5000倍 (e)0.2 mA空氣端1000倍,插圖5000倍 (f)0.5 mA空氣端1000倍,插圖5000倍 77
圖 45:不同電流採取放電容量10000 mAhg-1-catalyst之電池陰極鋰片端測試後:(a)0.1 mA鋰片端1000倍,插圖5000倍 (b)0.2 mA鋰片端1000倍,插圖5000倍 (c)0.5 mA鋰片端1000倍,插圖5000倍 (d)0.1 mA空氣端1000倍,插圖5000倍 (e)0.2 mA空氣端1000倍,插圖5000倍 (f)0.5 mA空氣端1000倍,插圖5000倍 79
圖 46:不同電流採取不同放電電容量之XRD分析圖:(a) 1000 mAhg-1-catalyst (b)5000 mAhg-1-catalyst (c)10000 mAhg-1-catalyst 80
表目錄
表1:各類金屬空氣電池之特性比較[18] 7
表2:各類電解液之優缺點[81,82] 20
表 3:充放電測試前之交流阻抗和功率密度分析結果:(a)MPL-Li片 (b) MPL-air 38
[1] A. Sieminski, International energy outlook, (2016, May 11), U.S., EIA, https://www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf.
[2] H. Ibrahim, A. Ilinca, J. Perron, Energy storage systems (characteristics) and comparisons, Renew. Sust. Energ. Rev., 12 (2008) 1221-1250.
[3] X. Tan, Q. Li, H. Wang, Advances and trends of energy storage technology in microgrid, Electr. Power Energy Syst., 44 (2013) 179-191.
[4] H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in critical energy storage system: A critical review, Prog. Nat. Sci. Mater., 19 (2009) 291-312.
[5] M. Aneke, M. Wang, Energy storage technologies and real life applications-A state of the art review, Appl. Energy, 179 (2016) 350-377.
[6] G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, W. Wilcke, Lithium-air battery: promise and challenges, J. Phys. Chem. Lett., 1 (2010) 2193-2203.
[7] B. Paul, J. Andrews, PEM unitised reversible/regenerative hydrogen fuel cell systems: state of the art and technical challenges, Renew. Sust. Energ. Rev., 79 (2017) 585-599.
[8] L. Carrette, K.A. Friedrich, U. Stimming, Fuel cells: principles, types, fuels, and applications, Chem. Phys. Chem., 1 (2000) 163-193.
[9] T. Nagaura, K. Tozawa, Lithium ion rechargeable battery, progress batteries solar cells, 9 (1990) 209-217.
[10] J. M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 414 (2001) 359-367.
[11] W.W. Wilcke, H.-C. Kim, The 800-km battery lithium-ion batteries are played out. Next up: lithium-air, IEEE Spectrum, 53 (2016) 42-62.
[12] V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review, Energy Environ. Sci., 4 (2011) 3243.
[13] R.V. Noorden, Sulphur back in vogue for batteries, Nature, 498 (2013) 416-417.
[14] D. Zheng, X.R. Zhang, J.K. Wang, D.Y. Qu, X.Q. Yang and D.Y. Qu, Reduction mechanism of sulfur in lithium-sulfur battery: From elemental sulfur to polysulfide, J. Power Sources, 301 (2016) 312-316.
[15] P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li-O2 and Li-S batteries with high energy storage, Nature Mater., 11 (2012) 19-29.
[16] Y. Yang, G. Zheng, Y. Cui, Nanostructured sulfur cathodes, Chem. Soc. Rev., 42 (2013) 3018-3032.
[17] W. Kang, N. Deng, J. Ju, Q. Li, D. Wu, X. Ma, L. Li, M. Naebe, B. Cheng, A review of recent developments in rechargeable lithium-sulfur batteries, Nanoscale, 8 (2016) 16541-16588.
[18] D. Linden, T.B. Reddy., (2001), Handbooks of batteries. (3rd ed.), ch. 38.2, New York: McGraw-Hill.
[19] E.L. Littauer, K.C. Tsai, Anodic behavior of lithium in aqueous electrolytes IV. Influence of temperature, J. Electrochem. Soc., 127 (1980) 521-524.
[20] K. M. Abraham, Z. Jiang, A polymer electrolyte-based rechargeable lithium/oxygen battery, J. Electrochem. Soc., 143 (1996) 1-5.
[21] T. Ogasawara, A. Débart, M. Holzapfel, P. Novák, P.G. Bruce, Rechargeable Li2O2 electrode for lithium batteries, J. Am. Chem. Soc., 128 (2006) 1390-1393.
[22] J. Wang, Y. Li, X. Sun, Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries, Nano Energy, 2 (2013) 443-467.
[23] M.A. Rahman, X. Wang, C. Wen, A review of high energy density lithium-air battery technology, J. Appl. Electrochem., 44 (2013) 5-22.
[24] B.D. McCloskey, R. Scheffler, A. Speidel, G. Girishkumar, A.C. Luntz, On the mechanism of nonaqueous Li-O2 electrochemistry on C and its kinetic overpotentials: some implications for Li-air batteries, J. Phys. Chem. C, 116 (2012) 23897-23905.
[25] C.O. Laoire, S. Mukerjee, K.M. Abraham, E.J. Plichta, M.A. Hendrickson, Elucidating the mechanism of oxygen reduction for lithium-air battery applications, J. Phys. Chem. C, 113 (2009) 20127-20134.
[26] C.O. Laoire, S. Mukerjee, K.M. Abraham, E.J. Plichta, M.A. Hendrickson, Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery, J. Phys. Chem. C, 114 (2010) 9178-9186.
[27] Z. Guo, X. Dong, S. Yuan, Y. Wang, Y. Xia, Humidity effect on electrochemical performance of Li-O2 batteries, J. Power Sources, 264 (2014) 1-7.
[28] Y.-C. Lu, Z. Xu, H.A. Gasteiger, S. Chen, K. H. Schifferli, Y.S. Horn, Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries, J. Am. Chem. Soc., 132 (2010) 12170-12171.
[29] H. Cheng, K. Scott, Nano-structured gas diffusion electrode-a high power and stable cathode material for rechargeable Li-air batteries, J. Power Sources, 235 (2013) 226-233.
[30] N. B. Aetukuri1, B.D. McCloskey, J.M. García1, L.E. Krupp, V. Viswanathan, A.C. Luntz, Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O2 batteries, Nature Chem., 7 (2015) 50-56.
[31] J. Lu, K. Amine, Recent research progress on non-aqueous lithium-air batteries from argonne national laboratory, Energies, 6 (2013) 6016-6044.
[32] P. He, Y. Wang, H. Zhou, A Li-air fuel cell with recycle aqueous electrolyte for improved stability, Electrochem. Commun., 12 (2010) 1686-1689.
[33] S.J. Visco, E. Nimon, B. Katz, L.C. De Jonghe, M.Y. Chu, Lithium metal aqueous batteries, 12th International Meeting on Lithium Batteries, (2004), Abst. #53, Nara, Japan
[34] T. Zhang, N. Imanishi, S. Hasegawa, A. Hirano, J. Xie, Y. Takeda, O. Yamamoto, N. Sammes, Water-stable lithium anode with the three-layer construction for aqueous lithium-air secondary batteries, Electrochem. Solid-State Lett., 12 (2009) A132-A135.
[35] N. Imanishi, S. Hasegawa, T. Zhang, A. Hirano, Y. Takeda, O. Yamamoto, Lithium anode for lithium-air secondary batteries, J. Power Sources, 185 (2008) 1392-1397.
[36] C.V. Amanchukwu, J.R. Harding, Y.S. Horn, P.T. Hammond, Understanding the chemical stability of polymers for lithium-air batteries, Chem. Mater., 27 (2015) 550-561.
[37] A.C. Luntz, J. Voss, K. Reuter, Interfacial challenges in Solid-State Li ion batteries, J. Phys. Chem. Lett., 6 (2015) 4599-4604.
[38] B. Wu, S. Wang, W.J. Evans, D.Z. Deng, J. Yang, J. Xiao, Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems, J. Mater. Chem. A, 4 (2016) 15266-15280.
[39] J.P. Zheng, P. Andrei, M. Hendrickson, E.J. Plichta, The theoretical energy densities of dual-electrolytes rechargeable Li-air and Li-air flow batteries, J. Electrochem. Soc.,158 (2011) A43-A46.
[40] X.J Chen, A. Shellikeri, Q. Wu, J.P. Zheng, M. Hendrickson, E.J. Plichta, A high-rate rechargeable Li-air flow battery, J. Electrochem. Soc., 160 (2013) A1619-A1623.
[41] M. Mehta, V. Bevara, P. Andrei, Maximum theoretical power density of lithium-air batteries with mixed electrolyte, J. Power Sources, 286 (2015) 299-308.
[42] N. Imanishi, O. Yamamoto, Rechargeable lithium-air batteries: characteristics and prospects, Mater. Today, 17 (2014) 24-30.
[43] S. Anthony, IBM creates breathing, high-density, light-weight lithium-air battery, (2012, April 20), New York, U.S., https://www.extremetech.com/computing/126745-ibm-creates- breathing-high-density-light-weight-lithium-air-battery.
[44] X. Li, J. Huang, A. Faghri, A critical review of macroscopic modeling studies on Li-O2 and Li-air batteries using organic electrolyte: challenges and opportunities, J. Power Sources, 332 (2016) 420-446.
[45] C. Tran, X.Q. Yang, D. Qu, Investigation of the gas diffusion electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity, J. Power Sources, 195 (2010) 2057-2063.
[46] J. Xiao, D. Wang, W. Xu, D.Y. Wang, R.E. Williford, J. Liu, J.G. Zhang, Optimization of air electrode for Li/air batteries, J. Electrochem. Soc., 157 (2010) A487-A492.
[47] M. Hayashi, H. Minowa, M. Takahashi, T. Shodai, Surface properties and electrochemical performance of carbon materials for air electrodes of lithium-air batteries, Electrochem., 78 (2010) 325-328.
[48] Y. Li, J. Wang, X. Li, J. Liu, D. Geng, J. Yang, R. Li, X. Sun, Nitrogen-doped carbon nanotubes as cathode for lithium-air batteries, Electrochem. Commun., 13 (2011) 668-672.
[49] R.R. Mitchell, B.M. Gallant, C.V. Thompson, Y.S. Horn, All carbon nanofiber electrodes for high-energy rechargeable Li-O2 batteries, Energy Environ. Sci., 4 (2011) 2952-2958.
[50] B. Sun, B. Wang, D. Su, L. Xiao, H. Ahn, G. Wang, Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance, Carbon, 50 (2012) 727-733.
[51] H.D. Lim, K.Y. Park, H. Song, E.Y. Jang, H. Gwon, J. Kim, T.H. Kim, M.D. Lima, R.O. Robles, X. Lepro, R.H. Baughman, K. Kang, Enhanced power and rechargeability of a Li-O2 battery based on a hierarchical-fibril CNT electrode, Adv. Mater., 25 (2013) 1348-1352.
[52] X.H. Yang, P. He, Y.Y. Xia, Preparation of mesocellular carbon foam and its application for lithium/oxygen battery, Electrochem. Commun., 11 (2009) 1127-1130.
[53] S.R. Gowda, A. Brunet, G.M. Wallraff, B.D. McCloskey, Implications of CO2 contamination in rechargeable nonaqueous Li-O2 batteries, J. Phys. Chem. Lett., 4 (2013) 276-279.
[54] S.M. Xu, Q.C. Zhu, F.H. Du, X.H. Li, X. Wei, K.X. Wang, J.S. Chen, Co3O4-based binder-free cathodes for lithium-oxygen batteries with improved cycling stability, Dalton Trans., 44 (2015) 8678-8684.
[55] Z. Peng, S.A. Freunberger, Y. Chen, P.G. Bruce, A reversible and higher-rate Li-O2 battery, Science, 337 (2012) 563-566.
[56] C. Tran, X.Q. Yang, D. Qu, Investigation of the gas diffusion electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity, J. Power Sources, 195 (2010) 2057-2063.
[57] H. Nakajima, T. Konomi, T. Kitahara, Direct water balance analysis on a polymer electrolyte fuel cell (PEFC): effects of hydrophobic treatment and micro-porous layer addition to the gas diffusion layer of a PEFC on its performance during a simulated start-up operation, J. Power Sources, 171 (2007) 457-463.
[58] J. Zeng, J.R. Nair, C. Francia, S. Bodoardo, N. Penazzi, Aprotic Li-O2 cells: Gas diffusion layer (GDL) as catalyst free cathode and tetraglyme/LiClO4 as electrolyte, Solid State Ionics, 262 (2014) 160-164.
[59] M. G. Park, K. S. Kim, S. H. Chun, H. Y. Sun, S. C. Lee, J. M. Sung, 2015. Lithium air battery. K.R. Patent No. 20150236388.
[60]湯景淳,非質子型鋰空氣電池之有機電解液與陰極之設計研究, 長庚大學化工與材料工程研究所碩士論文,台灣(2016)
[61] J. Amici, C. Francia, J. Zeng, S. Bodoardo, N. Penazzi, Protective PVDF-HFP-based membranes for air de-hydration at the cathode of the rechargeable Li-air cell, J. Appl. Electrochem., 46 (2016) 617-626.
[62] Y.C. Lu, H.A. Gasteiger, Y.S. Horn, Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries, J. Am. Chem. Soc., 133 (2011) 19048-19051.
[63] A. Zahoor, H.S. Jang, J.S. Jeong, M. Christy, Y.J. Hwang, K.S. Nahm, A comparative study of nanostructured α and δ MnO2 for lithium oxygen battery application, RSC Adv., 4 (2014) 8973-8977.
[64] A. Débart, J. Bao, G. Armstrong, P.G. Bruce, An O2 cathode for rechargeable lithium batteries: The effect of a catalyst, J. Power Sources, 174 (2007) 1177-1182.
[65] G.M. Veith, J. Nanda, L.H. Delmau, N.J. Dudney, Influence of lithium salts on the discharge chemistry of Li-air cells, J. Phys. Chem. Lett., 3 (2012) 1242-1247.
[66] S.A. Freunberger, Y. Chen, Z. Peng, J.M. Griffin, L.J. Hardwick, F. Brade, P. Novák, P.G. Bruce, Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes, J. Am. Chem. Soc., 133 (2011) 8040-8047.
[67] S. Saito, H. Watanabe, K. Ueno, T. Mandai, S. Seki, S. Tsuzuki, Y. Kameda, K. Dokko, M. Watanabe, Y. Umebayashi, Li+ Local Structure in hydrofluoroether diluted Li-glyme solvate ionic liquid, J. Phys. Chem. B, 120 (2016) 3378-3387.
[68] D. Oh, J. Qi, B. Han, G. Zhang, T.J. Carney, J. Ohmura, Y. Zhang, Y.S. Horn, A.M. Belcher, M13 virus-directed synthesis of nanostructured metal oxides for lithium-oxygen batteries, Nano Lett., 14 (2014) 4837-4845.
[69] J. Read, Ether-based electrolytes for the lithium/oxygen organic electrolyte battery, J. Electrochem. Soc., 153 (2006) A96-A100.
[70] D. Sharon, V. Etacheri, A. Garsuch, M. Afri, A.A. Frimer, D. Aurbach, On the challenge of electrolyte solutions for Li-air batteries: monitoring oxygen reduction and related reactions in polyether solutions by spectroscopy and EQCM, J. Physical. Chem. Lett., 4 (2013) 127-131.
[71] Q. Li, P. Xu, W. Gao, S. Ma, G. Zhang, R. Cao, J. Cho, H.L. Wang, G. Wu, Graphene/graphene-tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li-O2 batteries, Adv. Mater., 26 (2014) 1378-1386.
[72] Z.H. Cui, X.X. Guo, Manganese monoxide nanoparticles adhered to mesoporous nitrogen-doped carbons for nonaqueous lithium-oxygen batteries, J. Power Sources, 267 (2014) 20-25.
[73] C.C. Li, H. Yu, Q. Yan, H.H. Hng, Green synthesis of highly reduced graphene oxide by compressed hydrogen gas towards energy storage devices, J. Power Sources, 274 (2015) 310-317.
[74] M. Hong, H.C. Choi, H.R. Byon, Nanoporous NiO plates with a unique role for promoted oxidation of carbonate and carboxylate species in the Li-O2 battery, Chem. Mater., 27 (2015) 2234-2241.
[75] P. Tan, W. Shyy, M.C. Wu, Y.Y. Huang, T.S. Zhao, Carbon electrode with NiO and RuO2 nanoparticles improves the cycling life of non-aqueous lithium-oxygen batteries, J. Power sources, 326 (2016) 303 -312.
[76] C.Y. Jung, T.S. Zhao, L. Zeng, P. Tan, Vertically aligned carbon nanotube-ruthenium dioxide core-shell cathode for non-aqueous lithium-oxygen batteries, J. Power Sources, 331 (2016) 82-90.
[77] M.M. Ottakam Thotiyl, S.A. Freunberger, Z. Peng, Y. Chen, Z. Liu, P.G. Bruce, A stable cathode for the aprotic Li-O2 battery, Nat. Mater., 12 (2013) 1050-1056.
[78] F. Li, S. Wu, D. Li, T. Zhang, P. He, A. Yamada, H. Zhou, The water catalysis at oxygen cathodes of lithium-oxygen cells, Nat. Commun., 6 (2015) 8843.
[79] I. Bardenhagen, O. Yezerska, M. Augustin, D. Fenske, A. Wittstock, M. Bäumer, In situ investigation of pore clogging during discharge of a Li/O2 battery by electrochemical impedance spectroscopy, J. Power Sources, 278 (2015) 255-264.
[80] N. Togasaki, T. Momma, T. Osaka, Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium-oxygen battery, J. Power Sources, 307 (2016) 98-104.
[81] V.S. Bryantsev, V. Giordani, W. Walker, M. Blanco, S. Zecevic, K. Sasaki, J. Uddin, D. Addison, G.V. Chase, Predicting solvent stability in aprotic electrolyte Li-air batteries: Nucleophilic substitution by the superoxide anion radical (O2•-), J. Phys. Chem. A, 115 (2011) 12399-12409.
[82] M. Balaish, A. Kraytsberg, Y.E. Eli, A critical review on lithium-air battery electrolytes, Phys. Chem. Chem. Phys., 16 (2014) 2801-2822.
[83] S. Wu, J. Tang, F. Li, X. Liu, Y. Yamauchi, M. Ishida, H. Zhou, A synergistic system for lithium-oxygen batteries in humid atmosphere integrating a composite cathode and a hydrophobic ionic liquid-based electrolyte, Adv. Funct. Mater., 26 (2016) 3291-3298.
[84] P. Tan, W. Shyy, T.S. Zhao, Z.H. Wei., L. An, Discharge product morphology versus operating temperature in non-aqueous lithium-air batteries, J. Power Sources, 278 (2015) 133-140.
[85] B. D. Adams, C. Radtke, R. Black, M. L. Trudeau, K. Zaghib, L. F. Nazar, Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge, Energ. Environ. Sci., 6 (2013) 1772-1778.
[86] F. Wu, Y. Xing, L. Li, J. Qian, W. Qu, J. Wen, D. Miller, Y. Ye, R. Chen, K. Amine, J. Lu, Facile Synthesis of Boron-doped rGO as cathode material for high energy Li-O2 batteries, ACS Appl. Mater. Interfaces, 36 (2016) 23635-23645.
[87] W. Yang, Z. Qian, C. Du, C. Hua, P. Zuo, X. Cheng, Y. Ma, G. Yin, Hierarchical ordered macroporous/ultrathin mesoporous carbon architecture: a promising cathode scaffold with excellent rate performance for rechargeable Li-O2 batteries, Carbon, 118 (2017) 139-147.
[88] Y.C. Lu, H.A. Gasteiger, E. Crumlin, R. McGuire, Y.S. Horn, Electrocatalytic activity studies of select metal surfaces and implications in Li-air batteries, J. Electrochem. Soc., 157 (2010) A1016-A1025.
[89] D.S. Kim, G.H. Lee, S. Lee, J.C. Kim, H.J. Lee, B.K. Kim, D.W. Kim, Electrocatalytic performance of CuO/graphene nanocomposites for Li-O2 batteries, J. Alloys Compd., 707 (2017) 275-280.
[90] B.D. McCloskey, A. Speidel, R. Scheffler, D.C. Miller, V. Viswanathan, J.S. Hummelshøj, J.K. Nørskov, A.C. Luntz, Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries, J. Phys. Chem. Lett., 8 (2012) 997-1001.
[91] J. Cao, S. Liu, J. Xie, S. Zhang, G. Cao, X. Zhao, Tips-bundled Pt/Co3O4 nanowires with directed peripheral growth of Li2O2 as efficient binder/carbon-Free catalytic cathode for lithium-oxygen battery, ACS Catal., 1 (2015) 241-245.
[92] B.D. McCloskey, D.S. Bethune, R.M. Shelby, T. Mori, R. Scheffler, A. Speidel, M. Sherwood, A.C. Luntz, Limitations in rechargeability of Li-O2 batteries and possible origins, J. Phys. Chem. Lett., 3 (2012) 3043-3047.
[93] P. Stevens, G. Toussaint, G. Caillon, P. Viaud, P. Vinatier, C. Cantau, O. Fichet, C. Sarrazin, M. Mallouki, Development of a lithium air rechargeable battery, ECS Trans., 28 (2010) 1-12.
[94] A. Manthiram, L. Li, Hybrid and aqueous lithium-air batteries, Adv. Energy Mater., 5 (2015) 1401302.
[95] F. Negri, C. Castiglioni, M. Tommasini, G. Zerbi, A computational study of the Raman spectra of large polycyclic aromatic hydrocarbons: toward molecularly defined subunits of graphite, J. Phys. Chem. A, 106 (2002) 3306-3317.
[96] Y. Shi, H. Li, J.I. Wong, X. Zhang, Y. Wang, H. Song, H.Y. Yang, MoS2 surface structure tailoring via carbonaceous promoter, Scientific Reports, 5 (2015) 10378.
[97] S. Ferraria, E. Quartarone, C. Tomasi, M. Bini, P. Galinetto, M. Fagnoni, P. Mustarelli, Investigation of ether-based ionic liquid electrolytes for lithium-O2 batteries, J. Electrochem. Soc., 162 (2015) A3001-A3006.
[98] D. Capsoni, M. Bini, S. Ferrari, E. Quartarone, P. Mustarelli, Recent advances in the development of Li-air batteries, J. Power Sources, 220 (2012) 253-263.
[99] M.M.O. Thotiyl, S.A. Freunberger, Z. Peng, P.G. Bruce, The carbon electrode in nonaqueous Li-O2 cells, J. Am. Chem. Soc., 135 (2013) 494-500.
[100] R.S. Sánchez-Carrera, B. Kozinsky, Computational Raman spectroscopy of organometallic reaction products in lithium and sodium-based battery systems, Phys. Chem. Chem. Phys., 16 (2014) 24549-24558.
[101] F. Wu, Y. Xing, X. Bi, Y. Yuan, H.H. Wang, R. Shahbazian-Yassar, L. Li, R. Chen, J. Lu, K. Amine, Systematic study on the discharge product of Pt-based lithium oxygen batteries, J. Power Sources, 332 (2016) 96-102.
[102] W. Zhou, H. Zhang, H. Nie, Y. Ma, Y. Zhang, H. Zhang, Hierarchical micron-sized mesoporous/macroporous graphene with well-tuned surface oxygen chemistry for high capacity and cycling stability Li-O2 battery, ACS Appl. Mater. Interfaces, 5 (2015) 3389-3397.
[103] J. Li, Y. Zhang, W. Zhou, H. Nie, H. Zhang, A hierarchically honeycomb-like carbon via one-step surface and pore adjustment with superior capacity for lithium-oxygen batteries, J. Power Sources, 262 (2014) 29-35.
[104] A.C. Luntz, B.D. McCloskey, Nonaqueous Li-air batteries: a status report, Chem. Rev., 23 (2014) 11721-11750.
[105] J.B. Varley, V. Viswanathan, J.K. Nørskov, A.C. Luntz, Lithium and oxygen vacancies and their role in Li2O2 charge transport in Li-O2 batteries, Energy Environ. Sci., 7 (2014) 720-727.
[106] Y. Lin, B. Moitoso, C. Martinez, E.D. Walsh, S.D. Lacey, J.W. Kim, L. Dai, L. Hu, J.W. Connell, Ultrahigh-capacity lithium-oxygen batteries enabled by dry-pressed holey graphene air cathodes, Nano Lett., 17 (2017) 3252-3260.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top