[1] A. Sieminski, International energy outlook, (2016, May 11), U.S., EIA, https://www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf.
[2] H. Ibrahim, A. Ilinca, J. Perron, Energy storage systems (characteristics) and comparisons, Renew. Sust. Energ. Rev., 12 (2008) 1221-1250.
[3] X. Tan, Q. Li, H. Wang, Advances and trends of energy storage technology in microgrid, Electr. Power Energy Syst., 44 (2013) 179-191.
[4] H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in critical energy storage system: A critical review, Prog. Nat. Sci. Mater., 19 (2009) 291-312.
[5] M. Aneke, M. Wang, Energy storage technologies and real life applications-A state of the art review, Appl. Energy, 179 (2016) 350-377.
[6] G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, W. Wilcke, Lithium-air battery: promise and challenges, J. Phys. Chem. Lett., 1 (2010) 2193-2203.
[7] B. Paul, J. Andrews, PEM unitised reversible/regenerative hydrogen fuel cell systems: state of the art and technical challenges, Renew. Sust. Energ. Rev., 79 (2017) 585-599.
[8] L. Carrette, K.A. Friedrich, U. Stimming, Fuel cells: principles, types, fuels, and applications, Chem. Phys. Chem., 1 (2000) 163-193.
[9] T. Nagaura, K. Tozawa, Lithium ion rechargeable battery, progress batteries solar cells, 9 (1990) 209-217.
[10] J. M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 414 (2001) 359-367.
[11] W.W. Wilcke, H.-C. Kim, The 800-km battery lithium-ion batteries are played out. Next up: lithium-air, IEEE Spectrum, 53 (2016) 42-62.
[12] V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review, Energy Environ. Sci., 4 (2011) 3243.
[13] R.V. Noorden, Sulphur back in vogue for batteries, Nature, 498 (2013) 416-417.
[14] D. Zheng, X.R. Zhang, J.K. Wang, D.Y. Qu, X.Q. Yang and D.Y. Qu, Reduction mechanism of sulfur in lithium-sulfur battery: From elemental sulfur to polysulfide, J. Power Sources, 301 (2016) 312-316.
[15] P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li-O2 and Li-S batteries with high energy storage, Nature Mater., 11 (2012) 19-29.
[16] Y. Yang, G. Zheng, Y. Cui, Nanostructured sulfur cathodes, Chem. Soc. Rev., 42 (2013) 3018-3032.
[17] W. Kang, N. Deng, J. Ju, Q. Li, D. Wu, X. Ma, L. Li, M. Naebe, B. Cheng, A review of recent developments in rechargeable lithium-sulfur batteries, Nanoscale, 8 (2016) 16541-16588.
[18] D. Linden, T.B. Reddy., (2001), Handbooks of batteries. (3rd ed.), ch. 38.2, New York: McGraw-Hill.
[19] E.L. Littauer, K.C. Tsai, Anodic behavior of lithium in aqueous electrolytes IV. Influence of temperature, J. Electrochem. Soc., 127 (1980) 521-524.
[20] K. M. Abraham, Z. Jiang, A polymer electrolyte-based rechargeable lithium/oxygen battery, J. Electrochem. Soc., 143 (1996) 1-5.
[21] T. Ogasawara, A. Débart, M. Holzapfel, P. Novák, P.G. Bruce, Rechargeable Li2O2 electrode for lithium batteries, J. Am. Chem. Soc., 128 (2006) 1390-1393.
[22] J. Wang, Y. Li, X. Sun, Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries, Nano Energy, 2 (2013) 443-467.
[23] M.A. Rahman, X. Wang, C. Wen, A review of high energy density lithium-air battery technology, J. Appl. Electrochem., 44 (2013) 5-22.
[24] B.D. McCloskey, R. Scheffler, A. Speidel, G. Girishkumar, A.C. Luntz, On the mechanism of nonaqueous Li-O2 electrochemistry on C and its kinetic overpotentials: some implications for Li-air batteries, J. Phys. Chem. C, 116 (2012) 23897-23905.
[25] C.O. Laoire, S. Mukerjee, K.M. Abraham, E.J. Plichta, M.A. Hendrickson, Elucidating the mechanism of oxygen reduction for lithium-air battery applications, J. Phys. Chem. C, 113 (2009) 20127-20134.
[26] C.O. Laoire, S. Mukerjee, K.M. Abraham, E.J. Plichta, M.A. Hendrickson, Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery, J. Phys. Chem. C, 114 (2010) 9178-9186.
[27] Z. Guo, X. Dong, S. Yuan, Y. Wang, Y. Xia, Humidity effect on electrochemical performance of Li-O2 batteries, J. Power Sources, 264 (2014) 1-7.
[28] Y.-C. Lu, Z. Xu, H.A. Gasteiger, S. Chen, K. H. Schifferli, Y.S. Horn, Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries, J. Am. Chem. Soc., 132 (2010) 12170-12171.
[29] H. Cheng, K. Scott, Nano-structured gas diffusion electrode-a high power and stable cathode material for rechargeable Li-air batteries, J. Power Sources, 235 (2013) 226-233.
[30] N. B. Aetukuri1, B.D. McCloskey, J.M. García1, L.E. Krupp, V. Viswanathan, A.C. Luntz, Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O2 batteries, Nature Chem., 7 (2015) 50-56.
[31] J. Lu, K. Amine, Recent research progress on non-aqueous lithium-air batteries from argonne national laboratory, Energies, 6 (2013) 6016-6044.
[32] P. He, Y. Wang, H. Zhou, A Li-air fuel cell with recycle aqueous electrolyte for improved stability, Electrochem. Commun., 12 (2010) 1686-1689.
[33] S.J. Visco, E. Nimon, B. Katz, L.C. De Jonghe, M.Y. Chu, Lithium metal aqueous batteries, 12th International Meeting on Lithium Batteries, (2004), Abst. #53, Nara, Japan
[34] T. Zhang, N. Imanishi, S. Hasegawa, A. Hirano, J. Xie, Y. Takeda, O. Yamamoto, N. Sammes, Water-stable lithium anode with the three-layer construction for aqueous lithium-air secondary batteries, Electrochem. Solid-State Lett., 12 (2009) A132-A135.
[35] N. Imanishi, S. Hasegawa, T. Zhang, A. Hirano, Y. Takeda, O. Yamamoto, Lithium anode for lithium-air secondary batteries, J. Power Sources, 185 (2008) 1392-1397.
[36] C.V. Amanchukwu, J.R. Harding, Y.S. Horn, P.T. Hammond, Understanding the chemical stability of polymers for lithium-air batteries, Chem. Mater., 27 (2015) 550-561.
[37] A.C. Luntz, J. Voss, K. Reuter, Interfacial challenges in Solid-State Li ion batteries, J. Phys. Chem. Lett., 6 (2015) 4599-4604.
[38] B. Wu, S. Wang, W.J. Evans, D.Z. Deng, J. Yang, J. Xiao, Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems, J. Mater. Chem. A, 4 (2016) 15266-15280.
[39] J.P. Zheng, P. Andrei, M. Hendrickson, E.J. Plichta, The theoretical energy densities of dual-electrolytes rechargeable Li-air and Li-air flow batteries, J. Electrochem. Soc.,158 (2011) A43-A46.
[40] X.J Chen, A. Shellikeri, Q. Wu, J.P. Zheng, M. Hendrickson, E.J. Plichta, A high-rate rechargeable Li-air flow battery, J. Electrochem. Soc., 160 (2013) A1619-A1623.
[41] M. Mehta, V. Bevara, P. Andrei, Maximum theoretical power density of lithium-air batteries with mixed electrolyte, J. Power Sources, 286 (2015) 299-308.
[42] N. Imanishi, O. Yamamoto, Rechargeable lithium-air batteries: characteristics and prospects, Mater. Today, 17 (2014) 24-30.
[43] S. Anthony, IBM creates breathing, high-density, light-weight lithium-air battery, (2012, April 20), New York, U.S., https://www.extremetech.com/computing/126745-ibm-creates- breathing-high-density-light-weight-lithium-air-battery.
[44] X. Li, J. Huang, A. Faghri, A critical review of macroscopic modeling studies on Li-O2 and Li-air batteries using organic electrolyte: challenges and opportunities, J. Power Sources, 332 (2016) 420-446.
[45] C. Tran, X.Q. Yang, D. Qu, Investigation of the gas diffusion electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity, J. Power Sources, 195 (2010) 2057-2063.
[46] J. Xiao, D. Wang, W. Xu, D.Y. Wang, R.E. Williford, J. Liu, J.G. Zhang, Optimization of air electrode for Li/air batteries, J. Electrochem. Soc., 157 (2010) A487-A492.
[47] M. Hayashi, H. Minowa, M. Takahashi, T. Shodai, Surface properties and electrochemical performance of carbon materials for air electrodes of lithium-air batteries, Electrochem., 78 (2010) 325-328.
[48] Y. Li, J. Wang, X. Li, J. Liu, D. Geng, J. Yang, R. Li, X. Sun, Nitrogen-doped carbon nanotubes as cathode for lithium-air batteries, Electrochem. Commun., 13 (2011) 668-672.
[49] R.R. Mitchell, B.M. Gallant, C.V. Thompson, Y.S. Horn, All carbon nanofiber electrodes for high-energy rechargeable Li-O2 batteries, Energy Environ. Sci., 4 (2011) 2952-2958.
[50] B. Sun, B. Wang, D. Su, L. Xiao, H. Ahn, G. Wang, Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance, Carbon, 50 (2012) 727-733.
[51] H.D. Lim, K.Y. Park, H. Song, E.Y. Jang, H. Gwon, J. Kim, T.H. Kim, M.D. Lima, R.O. Robles, X. Lepro, R.H. Baughman, K. Kang, Enhanced power and rechargeability of a Li-O2 battery based on a hierarchical-fibril CNT electrode, Adv. Mater., 25 (2013) 1348-1352.
[52] X.H. Yang, P. He, Y.Y. Xia, Preparation of mesocellular carbon foam and its application for lithium/oxygen battery, Electrochem. Commun., 11 (2009) 1127-1130.
[53] S.R. Gowda, A. Brunet, G.M. Wallraff, B.D. McCloskey, Implications of CO2 contamination in rechargeable nonaqueous Li-O2 batteries, J. Phys. Chem. Lett., 4 (2013) 276-279.
[54] S.M. Xu, Q.C. Zhu, F.H. Du, X.H. Li, X. Wei, K.X. Wang, J.S. Chen, Co3O4-based binder-free cathodes for lithium-oxygen batteries with improved cycling stability, Dalton Trans., 44 (2015) 8678-8684.
[55] Z. Peng, S.A. Freunberger, Y. Chen, P.G. Bruce, A reversible and higher-rate Li-O2 battery, Science, 337 (2012) 563-566.
[56] C. Tran, X.Q. Yang, D. Qu, Investigation of the gas diffusion electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity, J. Power Sources, 195 (2010) 2057-2063.
[57] H. Nakajima, T. Konomi, T. Kitahara, Direct water balance analysis on a polymer electrolyte fuel cell (PEFC): effects of hydrophobic treatment and micro-porous layer addition to the gas diffusion layer of a PEFC on its performance during a simulated start-up operation, J. Power Sources, 171 (2007) 457-463.
[58] J. Zeng, J.R. Nair, C. Francia, S. Bodoardo, N. Penazzi, Aprotic Li-O2 cells: Gas diffusion layer (GDL) as catalyst free cathode and tetraglyme/LiClO4 as electrolyte, Solid State Ionics, 262 (2014) 160-164.
[59] M. G. Park, K. S. Kim, S. H. Chun, H. Y. Sun, S. C. Lee, J. M. Sung, 2015. Lithium air battery. K.R. Patent No. 20150236388.
[60]湯景淳,非質子型鋰空氣電池之有機電解液與陰極之設計研究, 長庚大學化工與材料工程研究所碩士論文,台灣(2016)[61] J. Amici, C. Francia, J. Zeng, S. Bodoardo, N. Penazzi, Protective PVDF-HFP-based membranes for air de-hydration at the cathode of the rechargeable Li-air cell, J. Appl. Electrochem., 46 (2016) 617-626.
[62] Y.C. Lu, H.A. Gasteiger, Y.S. Horn, Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries, J. Am. Chem. Soc., 133 (2011) 19048-19051.
[63] A. Zahoor, H.S. Jang, J.S. Jeong, M. Christy, Y.J. Hwang, K.S. Nahm, A comparative study of nanostructured α and δ MnO2 for lithium oxygen battery application, RSC Adv., 4 (2014) 8973-8977.
[64] A. Débart, J. Bao, G. Armstrong, P.G. Bruce, An O2 cathode for rechargeable lithium batteries: The effect of a catalyst, J. Power Sources, 174 (2007) 1177-1182.
[65] G.M. Veith, J. Nanda, L.H. Delmau, N.J. Dudney, Influence of lithium salts on the discharge chemistry of Li-air cells, J. Phys. Chem. Lett., 3 (2012) 1242-1247.
[66] S.A. Freunberger, Y. Chen, Z. Peng, J.M. Griffin, L.J. Hardwick, F. Brade, P. Novák, P.G. Bruce, Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes, J. Am. Chem. Soc., 133 (2011) 8040-8047.
[67] S. Saito, H. Watanabe, K. Ueno, T. Mandai, S. Seki, S. Tsuzuki, Y. Kameda, K. Dokko, M. Watanabe, Y. Umebayashi, Li+ Local Structure in hydrofluoroether diluted Li-glyme solvate ionic liquid, J. Phys. Chem. B, 120 (2016) 3378-3387.
[68] D. Oh, J. Qi, B. Han, G. Zhang, T.J. Carney, J. Ohmura, Y. Zhang, Y.S. Horn, A.M. Belcher, M13 virus-directed synthesis of nanostructured metal oxides for lithium-oxygen batteries, Nano Lett., 14 (2014) 4837-4845.
[69] J. Read, Ether-based electrolytes for the lithium/oxygen organic electrolyte battery, J. Electrochem. Soc., 153 (2006) A96-A100.
[70] D. Sharon, V. Etacheri, A. Garsuch, M. Afri, A.A. Frimer, D. Aurbach, On the challenge of electrolyte solutions for Li-air batteries: monitoring oxygen reduction and related reactions in polyether solutions by spectroscopy and EQCM, J. Physical. Chem. Lett., 4 (2013) 127-131.
[71] Q. Li, P. Xu, W. Gao, S. Ma, G. Zhang, R. Cao, J. Cho, H.L. Wang, G. Wu, Graphene/graphene-tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li-O2 batteries, Adv. Mater., 26 (2014) 1378-1386.
[72] Z.H. Cui, X.X. Guo, Manganese monoxide nanoparticles adhered to mesoporous nitrogen-doped carbons for nonaqueous lithium-oxygen batteries, J. Power Sources, 267 (2014) 20-25.
[73] C.C. Li, H. Yu, Q. Yan, H.H. Hng, Green synthesis of highly reduced graphene oxide by compressed hydrogen gas towards energy storage devices, J. Power Sources, 274 (2015) 310-317.
[74] M. Hong, H.C. Choi, H.R. Byon, Nanoporous NiO plates with a unique role for promoted oxidation of carbonate and carboxylate species in the Li-O2 battery, Chem. Mater., 27 (2015) 2234-2241.
[75] P. Tan, W. Shyy, M.C. Wu, Y.Y. Huang, T.S. Zhao, Carbon electrode with NiO and RuO2 nanoparticles improves the cycling life of non-aqueous lithium-oxygen batteries, J. Power sources, 326 (2016) 303 -312.
[76] C.Y. Jung, T.S. Zhao, L. Zeng, P. Tan, Vertically aligned carbon nanotube-ruthenium dioxide core-shell cathode for non-aqueous lithium-oxygen batteries, J. Power Sources, 331 (2016) 82-90.
[77] M.M. Ottakam Thotiyl, S.A. Freunberger, Z. Peng, Y. Chen, Z. Liu, P.G. Bruce, A stable cathode for the aprotic Li-O2 battery, Nat. Mater., 12 (2013) 1050-1056.
[78] F. Li, S. Wu, D. Li, T. Zhang, P. He, A. Yamada, H. Zhou, The water catalysis at oxygen cathodes of lithium-oxygen cells, Nat. Commun., 6 (2015) 8843.
[79] I. Bardenhagen, O. Yezerska, M. Augustin, D. Fenske, A. Wittstock, M. Bäumer, In situ investigation of pore clogging during discharge of a Li/O2 battery by electrochemical impedance spectroscopy, J. Power Sources, 278 (2015) 255-264.
[80] N. Togasaki, T. Momma, T. Osaka, Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium-oxygen battery, J. Power Sources, 307 (2016) 98-104.
[81] V.S. Bryantsev, V. Giordani, W. Walker, M. Blanco, S. Zecevic, K. Sasaki, J. Uddin, D. Addison, G.V. Chase, Predicting solvent stability in aprotic electrolyte Li-air batteries: Nucleophilic substitution by the superoxide anion radical (O2•-), J. Phys. Chem. A, 115 (2011) 12399-12409.
[82] M. Balaish, A. Kraytsberg, Y.E. Eli, A critical review on lithium-air battery electrolytes, Phys. Chem. Chem. Phys., 16 (2014) 2801-2822.
[83] S. Wu, J. Tang, F. Li, X. Liu, Y. Yamauchi, M. Ishida, H. Zhou, A synergistic system for lithium-oxygen batteries in humid atmosphere integrating a composite cathode and a hydrophobic ionic liquid-based electrolyte, Adv. Funct. Mater., 26 (2016) 3291-3298.
[84] P. Tan, W. Shyy, T.S. Zhao, Z.H. Wei., L. An, Discharge product morphology versus operating temperature in non-aqueous lithium-air batteries, J. Power Sources, 278 (2015) 133-140.
[85] B. D. Adams, C. Radtke, R. Black, M. L. Trudeau, K. Zaghib, L. F. Nazar, Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge, Energ. Environ. Sci., 6 (2013) 1772-1778.
[86] F. Wu, Y. Xing, L. Li, J. Qian, W. Qu, J. Wen, D. Miller, Y. Ye, R. Chen, K. Amine, J. Lu, Facile Synthesis of Boron-doped rGO as cathode material for high energy Li-O2 batteries, ACS Appl. Mater. Interfaces, 36 (2016) 23635-23645.
[87] W. Yang, Z. Qian, C. Du, C. Hua, P. Zuo, X. Cheng, Y. Ma, G. Yin, Hierarchical ordered macroporous/ultrathin mesoporous carbon architecture: a promising cathode scaffold with excellent rate performance for rechargeable Li-O2 batteries, Carbon, 118 (2017) 139-147.
[88] Y.C. Lu, H.A. Gasteiger, E. Crumlin, R. McGuire, Y.S. Horn, Electrocatalytic activity studies of select metal surfaces and implications in Li-air batteries, J. Electrochem. Soc., 157 (2010) A1016-A1025.
[89] D.S. Kim, G.H. Lee, S. Lee, J.C. Kim, H.J. Lee, B.K. Kim, D.W. Kim, Electrocatalytic performance of CuO/graphene nanocomposites for Li-O2 batteries, J. Alloys Compd., 707 (2017) 275-280.
[90] B.D. McCloskey, A. Speidel, R. Scheffler, D.C. Miller, V. Viswanathan, J.S. Hummelshøj, J.K. Nørskov, A.C. Luntz, Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries, J. Phys. Chem. Lett., 8 (2012) 997-1001.
[91] J. Cao, S. Liu, J. Xie, S. Zhang, G. Cao, X. Zhao, Tips-bundled Pt/Co3O4 nanowires with directed peripheral growth of Li2O2 as efficient binder/carbon-Free catalytic cathode for lithium-oxygen battery, ACS Catal., 1 (2015) 241-245.
[92] B.D. McCloskey, D.S. Bethune, R.M. Shelby, T. Mori, R. Scheffler, A. Speidel, M. Sherwood, A.C. Luntz, Limitations in rechargeability of Li-O2 batteries and possible origins, J. Phys. Chem. Lett., 3 (2012) 3043-3047.
[93] P. Stevens, G. Toussaint, G. Caillon, P. Viaud, P. Vinatier, C. Cantau, O. Fichet, C. Sarrazin, M. Mallouki, Development of a lithium air rechargeable battery, ECS Trans., 28 (2010) 1-12.
[94] A. Manthiram, L. Li, Hybrid and aqueous lithium-air batteries, Adv. Energy Mater., 5 (2015) 1401302.
[95] F. Negri, C. Castiglioni, M. Tommasini, G. Zerbi, A computational study of the Raman spectra of large polycyclic aromatic hydrocarbons: toward molecularly defined subunits of graphite, J. Phys. Chem. A, 106 (2002) 3306-3317.
[96] Y. Shi, H. Li, J.I. Wong, X. Zhang, Y. Wang, H. Song, H.Y. Yang, MoS2 surface structure tailoring via carbonaceous promoter, Scientific Reports, 5 (2015) 10378.
[97] S. Ferraria, E. Quartarone, C. Tomasi, M. Bini, P. Galinetto, M. Fagnoni, P. Mustarelli, Investigation of ether-based ionic liquid electrolytes for lithium-O2 batteries, J. Electrochem. Soc., 162 (2015) A3001-A3006.
[98] D. Capsoni, M. Bini, S. Ferrari, E. Quartarone, P. Mustarelli, Recent advances in the development of Li-air batteries, J. Power Sources, 220 (2012) 253-263.
[99] M.M.O. Thotiyl, S.A. Freunberger, Z. Peng, P.G. Bruce, The carbon electrode in nonaqueous Li-O2 cells, J. Am. Chem. Soc., 135 (2013) 494-500.
[100] R.S. Sánchez-Carrera, B. Kozinsky, Computational Raman spectroscopy of organometallic reaction products in lithium and sodium-based battery systems, Phys. Chem. Chem. Phys., 16 (2014) 24549-24558.
[101] F. Wu, Y. Xing, X. Bi, Y. Yuan, H.H. Wang, R. Shahbazian-Yassar, L. Li, R. Chen, J. Lu, K. Amine, Systematic study on the discharge product of Pt-based lithium oxygen batteries, J. Power Sources, 332 (2016) 96-102.
[102] W. Zhou, H. Zhang, H. Nie, Y. Ma, Y. Zhang, H. Zhang, Hierarchical micron-sized mesoporous/macroporous graphene with well-tuned surface oxygen chemistry for high capacity and cycling stability Li-O2 battery, ACS Appl. Mater. Interfaces, 5 (2015) 3389-3397.
[103] J. Li, Y. Zhang, W. Zhou, H. Nie, H. Zhang, A hierarchically honeycomb-like carbon via one-step surface and pore adjustment with superior capacity for lithium-oxygen batteries, J. Power Sources, 262 (2014) 29-35.
[104] A.C. Luntz, B.D. McCloskey, Nonaqueous Li-air batteries: a status report, Chem. Rev., 23 (2014) 11721-11750.
[105] J.B. Varley, V. Viswanathan, J.K. Nørskov, A.C. Luntz, Lithium and oxygen vacancies and their role in Li2O2 charge transport in Li-O2 batteries, Energy Environ. Sci., 7 (2014) 720-727.
[106] Y. Lin, B. Moitoso, C. Martinez, E.D. Walsh, S.D. Lacey, J.W. Kim, L. Dai, L. Hu, J.W. Connell, Ultrahigh-capacity lithium-oxygen batteries enabled by dry-pressed holey graphene air cathodes, Nano Lett., 17 (2017) 3252-3260.