跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/02 21:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂溢中
研究生(外文):Yi-Zhong Lu
論文名稱:高精度線性馬達順滑模態控制
論文名稱(外文):Sliding Mode Control of Linear Motor Precision Serve System
指導教授:陳金聖陳金聖引用關係
口試委員:顏炳郎范憶華
口試日期:2006-07-31
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:自動化科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:89
中文關鍵詞:順滑模態控制可變結構觀測補償LuGre摩擦力模型
外文關鍵詞:Variable structure systemsSliding mode controlLuGre friction
相關次數:
  • 被引用被引用:1
  • 點閱點閱:372
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
現在產業界裡,需要求高精度、高性能與高經濟之下,以線性馬達系統可容易達到所需要求,但也需要一套系統控制理論,將線性馬達控制到我們所需要目標。
本論文提出一個以順滑模態控制原理,屬於一種強健控制系統架構,對系統達到理想之控制及定位。在本篇採用兩個不同順滑模態(Sliding mode)架構。一個可變結構觀測器,這個控制架構主要目的是為估測出非線性速度響應,再利用所求出速度訊號放入LuGre摩擦力模型內部狀態,求取其他無法預知訊號,將所得到訊號放入順滑模態控制架構裡。另一各架構是順滑模態軌跡控制器,此順滑控制器控制採用位置誤差作為控制器內部條件,將馬達作動達到所要求之目標,且將軌跡誤差降低極小,符合控制系統要求。
最後,將系統的響應訊號與理想訊號作比較,由模擬與實驗結果裡,得知此控制理論方法可得到系統控制及降低摩擦力之影響。
The need for high speed and high precision motion control in the machine tool industry and in the manufacture of semiconductors is rapidly growing. In order to achieve the high precision requirement, friction effects have to be considered in the motion system. Friction will lead to tracking errors, limit cycles and undesired stick-slip motion.
In this paper, a nonlinear state observer using variable structure systems theory is firstly proposed to estimate the velocity of linear motor. According to this estimated velocity, parameters of LuGre friction model and friction force are estimated based on closed velocity loop. When compared with the conventional open loop parameter estimation, this closed loop scheme is robust and remarkably reduces the effect of measurement noise. Then, a sliding mode controller with friction compensator is proposed to control the linear motor. It is effective to friction compensation and robust to parametric uncertainties.
Finally, the proposed controller is evaluated and compared experimentally on a microcomputer, which is ported a multitasking real-time kernel, controlled linear motor positioning system. The simulated and experimented results show that the velocity error is drastically improved by the sliding mode controller with friction compensator in a linear motor system.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
符號彙整 x
第一章 序論 1
1.1 研究動機與目的 1
1.2 文獻探討 2
1.3 研究方法 3
1.4 論文架構 4
第二章 系統架構與線性馬達簡介 5
2.1系統整體架構 5
2.2線性馬達簡介 6
2.2.1線性馬達結構 6
2.2.2線性馬達分類與特性 8
2.2.3線性馬數學模式 9
2.3實驗設備之簡介 12
2.4實驗之規劃 14
2.4.1扭力開迴路系統 14
2.4.2速度閉迴路系統 17
第三章 摩擦力介紹與系統架構參數估測 22
3.1摩擦力現象 22
3.2動態摩擦力模型(LuGre Modle) 26
3.3 估測摩擦力現象 29
3.4系統參數估測與摩擦力參數估測 32
3.5 系統平台質量、黏滯係數、庫倫摩擦力估測 34
3.6 Stribeck 速度常數估測 43
3.7 最大靜摩擦力估測 45
3.8 刺毛剛性係數與阻尼係數之估測 46
3.9 系統整體估測參數表 51
第四章 系統控制架構與摩擦力補償架構 52
4.1系統控制架構 52
4.1.1順滑模態控制架構 53
4.1.2可變結構估測器架構 53
4.2順滑模態概要 54
4.3可變結構控制原理 54
4.4順滑模態控制原理 57
4.5順滑模態控制器設計法則 59
4.5.1順滑模態控制的基本特性 61
4.5.2順滑模態控制器設計 62
4.6順滑模態狀態估測器設計原理 65
4.6.1可變結構估測器設計法則 65
4.6.2可變結構估測器設計 68
第五章 模擬與實驗 71
5.1順滑模態控制與可變結構估測器之模擬與實驗 71
5.2順滑模態控制器模擬 73
5.3可變結構估測器模擬 77
5.4順滑模態控制與可變結構估測器實驗結果 80
第六章 結論 85
參考文獻 86
[1] D. Karnopp, “Computer Simulation of Stick-slip Friction in Mechanical Dynamic System,” Transactions of the ASME Journal of Dynamic System Measurement and Control, Vol. 107,1985, pp.100-103.
[2] B. Armstrong, ”Control of Machines with Friction ”, Klumwe Academic Publishers,1991.
[3] H. Olsson, K. J. Aström, C. Canudas de Wit, M. Gäfvert and P. Lischinsky, “Friction Models and Friction Compensation,” European Journal of Control, Dec. 1998, No. 4, pp.176-195.
[4] S. Drakkunov, and V. I. Utkin, “Sliding mode observer:Tutorial,”IEE conf. on Decision and control, 1995, pp.3376-3378.
[5] C. Canudas de Wit and P. Lischinsky, “Adaptive Friction Compensation with Partially Known Dynamic Friction Model,“ International Journal of Adaptive Control and Signal Processing, Vol. 11, 1997, pp. 65-80.
[6] N. Hussain Al-Duwaish, “Parameterization and Compensation of Friction Forces Using Genetic Algorithms,” Industry Applications Conference, 1999. Thirty-Fourth IAS Annual Meeting. Conference Record of the 1999 IEEE, Vol. 1, Oct. 1999, pp. 3-7.
[7] S. Cetunkunt and D. Donmez, “CMAC learning controller for sever control of high precision machine tools,” in Proc. Amer. Control .Conf, San Francisco, CA, pp1976-1979, 1993.
[8] S. W. Lee and J. H. Kin, “CMAC network-base robust controller for systems with friction,” in IEE Conference Decision Control, New Orleans, LA, pp, 2938-3939, 1995.
[9] T. G. Colhour and S. S. Nair, “Accurate Estimation of Friction,” Proceedings of the 1994 American Control Conference, Baltimore, June 1994, pp. 1188-1189.
[10] .M . Tomizuka, “Robust Digital Motion Controllers for Mechanical Systems,” Elsevier Robotics and Automous Systems, pp. 143-149, 1996.
[11] Umeno T. and Y. Hori, “Robust Speed Control of DC Servomotors Using Modern Two Degrees-of-Freedom Controller Design,” IEEE Transactions on Industrial Electronics, Vol. 38, No. 5, pp. 363-368, 1991.
[12] S. Endo, M. Tomizuka and Y. Hori, “Robust Digital Tracking Controller Design for High-Speed Positioning Systems,” Proc. 1993 American Control Conference (ACC), San Francisco, California, pp.2494-2498, 1993.
[13] Matthew T. White, M. Tomizuka, Craig Smith, “Rejection of Disk Drive Vibration and Shock Disturbances With a Disturbance Observer,” Proceedings of the American Control, Conference, San Diego, Califomia, June 1999.
[14] U. Itkis, Control System of Variable Structure, New York: John Wieley,1976.
[15] V. I. Utkin, Sliding Mode and Their Application in Variable Structure System, Moscow: MIR publishers, 19978.
[16] K. K. D. Young, Variable Structure Control for Robotics and Aerospace Application, Elsevier Science Publishers, Netherland, 1993.
[17] A. S. I. Zinober (ed.), Deterministic Control of Uncertain System, Peter Peregrinus, Stevnage UK, 1990.
[18] A. S. I. Zinober (ed.), Variable Structure and Lyapunov control, Springer-Verlag, Berlin, 1994.
[19] Jean J. Labrosse, MicroC/OS-II The Real-Time Kernel, CMP Book,2002.
[20] 許溢适,線性電動機應用手冊,台北:文笙書局,1991年初版。
[21] H. Wakiwaka , H. Yajima and H. Yamada, “Design and Evaluation of Linear DC Motor for Pen Recorder, ” IEEE transactions on magnetic, Vol. 35, pp.3755~3757, 1995.
[22] H. Wakiwaka, H. Yajima, “Consideration on Hight-respone of a Linear DC Motor, ” IEEE, 0-7803-3862-6, 1997.
[23] B. Armstrong-Hélouvry, P. Dupont and C. Canudas de Wit, “A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction,” Automatic, Vol. 30, No. 7, 1994, pp. 1083-1138.
[24] P. Dahl, “A Solid Friction Model,” Technical Report, The Aerospace Corporation , EI Segundo, CA, 1968.
[25] C. Canudas de Wit, H. Olsson, K. J. Astrom, and P. Lischinsky, “A New Model for Control of Systems with Friction,” IEEE Transactions On Automatic Control, Vol. 40, No. 3, March 1995.
[26] C. Canudas de Wit, R. Valvekens and M. Gafvert, “Friction Identification and Compensation Methods,” Material of the Workshop presented at: the IEEE Conference on Decision and Control CDC''98, Dec. Florida, USA, and at the IEEE Conference on Control Applications CCA''99, August 22-27, Hawaii, USA.
[27] 施禕迪,線性馬達運動平台之高精度控制含摩擦力補償,碩士論文,國立交通大學,新竹,2004。
[28] Bong Keun Kim and Wan Kyun Chung, “Advance Design of Disturbance Observer for High Performance Motion Control System,” Proceeding of the American Control Conference, May 2002, pp.2112-2117.
[29] Nobuyuki Matsui, Tatsuo Makino and Hirokazu Satoh, “Auto compensation of Torque Ripple of Direct Drive Motor by Torque Observer,” IEEE Trans. On industry applications, Vol. 29, no. 1, January/February 1993, pp.187-194.
[30] K. Yamada, S. Komada, M. Ishida, and T. Hori, “Analysis of Servo System Realize by Disturbance Observer,” in Proc. IEEE International Workshop on Advanceed Motion Control, 1996, pp.338-343.
[31] E. Baily and A. Arapostathid, “ Simple sliding mode control scheme applied to robot manipulator,” Int. J. Control, Vol. 45, pp.1197-1209, 1987.
[32] E. Baily and A. Arapostathis, “Simple sliding mode control scheme Applied to robot manipulator,” Int. J. of System Science , Vol. 17, pp.876-885, 1986.
[33] B. L. Waloctt and M. J. Corless, and S. H. Zak, “Comparative Study of nonlinear State Observation Techniques,” Int. J. Control, Vol. 45, pp.2109-2132, 1987.
[34] B. L. Waloctt and S. H. Zak, “State Observation of nonlinear Uncertain Dynamical System,” IEEE Trans. On Automation Control, Vol. 32, pp.166-170, 1987.
[35] C. Edwards, and S. K. Spurgeon, Sliding mode Control: Theory and Application, Taylor & Francis, London, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top