跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/07 17:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇亭伊
研究生(外文):SU, TING-YI
論文名稱:具複合染料之染料敏化太陽電池研究
論文名稱(外文):The Study of Dye-sensitized Solar Cells with Compound Dyes
指導教授:劉世崑劉世崑引用關係陳進祥陳進祥引用關係
指導教授(外文):LIU, SHIN-KUNCHEN, CHIN-HSIANG
口試委員:林彥勝陳進祥劉世崑
口試委員(外文):LIN, YEN-SHENGCHEN, CHIN-HSIANGLIU, SHIN-KUN
口試日期:2017-07-05
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:光電與通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:75
中文關鍵詞:染料敏化太陽電池超音波處理混合方法逐步方法
外文關鍵詞:N719SQ2
相關次數:
  • 被引用被引用:6
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:1
本研究在染料敏化太陽電池結構中的染料層使用複合染料,因兩種染料具有不同吸收光譜特性,利用此互補光譜特性可改善太陽電池的光捕獲效率,進而提升電池之光電轉換效率。本研究採用釕金屬染料N719與有機染料SQ2作為染料敏化太陽電池的光敏化劑。在電池製程中,採用超音波處理,可大幅縮短二氧化鈦層吸附染料所需的時間。傳統浸泡法所需時間為8到24小時,而超音波處理約只需20分鍾。本研究又依染料混合及逐步兩種方法分為兩個實驗。
實驗一的研究目的在了解N719及SQ2染料依不同體積比例混合如何影響所製成電池的轉換效率,以獲得最佳之染料體積混合比例,使染料敏化太陽電池具有較佳之光電轉換效率。單獨使用N719及SQ2染料所製成之電池效率分別為3.70%與0.92%。若將兩個染料依不同體積比混合方法,當混合染料(N719+SQ2)之體積比例為6:4時,所製成電池之光電轉換效率可高達4.65%
實驗二之研究目的是了解N719及SQ2染料經逐步式製程對電池效率之影響,並針對二氧化鈦薄膜吸附染料順序與超音波處理時間進行優化。由研究結果可知,在超音波處理時間同樣為10分鐘情形下,讓二氧化鈦薄膜先吸附N719染料,後吸附SQ2染料,結果電池之最佳轉換效率為2.91%;若是讓二氧化鈦薄膜先吸附SQ2染料,後吸附N719染料,則電池之效率只達到2.55%。最後,若超音波處理時間為變數,當二氧化鈦薄膜依序分別浸泡於N719溶液中20分鐘及SQ2溶液中5分鐘,所製成電池之光電轉換效率可高達4.32%。

In this study, the proposed dye-sensitized solar cells use two different types of dyes as the sensitizers of the cells. This co-sensitization can improve the ability of light capture and the conversion efficiency of the cell because each dye has its own absorption spectrum which can be arranged complementary to the other dye. In fact, the co-sensitization technique makes a broader absorption of solar energy to improve the performance of the cell. In this study, N719 and SQ2 are used as the sensitizers of the proposed dye-sensitized solar cells. An ultrasonic treatment is employed during the immersion of the titanium dioxide layer into the dye solution to dramatically reduce the process time, from typically 8-24 hours of immersion down to about 20 minutes. A cocktail approach and a stepwise approach are used to evaluate the performance of the resultant cells.
The cocktail approach is studied to understand how the mixture of N719 and SQ2 dyes in different volume ratios affects the conversion efficiencies of the cells. The optimal conversion efficiency of 4.65% is found for the cell sensitized with the co-sensitizer (N719+SQ2) at the volume ratio of 6:4, which is higher than that of 3.7% for the cell sensitized with N719 dye and that of 0.92% for the cell sensitized with SQ2 dye.
The stepwise approach is studied to understand how the dyeing of N719 and SQ2 in the time sequence on the titanium dioxide layer affects the conversion efficiencies of the cells. The optimization of the time interval for dyeing N719 and SQ2 sequentially on the titanium dioxide layer and the period of time for ultrasonic treatment is included in this study. In the case of dyeing N719 and then SQ2, each under ultrasonic treatment for 10 minutes, the results show that the optimal conversion efficiency of the cell is 2.91%. On the other hand, in the case of dyeing SQ2 and then N719, the conversion efficiency is lower, which is 2.55%. However, when the titanium dioxide film is sequentially immersed in N719 solution for 20 minutes and SQ2 solution for 5 minutes with ultrasonic treatment, the optimal conversion efficiency of the cell is up to 4.32%

中文摘要
Abstract
致謝
目錄
圖目錄
表目錄
第1章 緒論
1.1 染料敏化太陽電池發展
1.2 本實驗室相關研究
1.3 研究動機
1.4 論文架構
第2章 研究方法
2.1 工作原理
2.2 實驗流程
2.2.1 玻璃基板清潔
2.2.2 工作電極製作
2.2.3 染料調配
2.2.4 對電極製備
2.2.5 電解液調配
2.2.6 元件組裝
2.2.7 實驗材料
2.2.8 量測儀器
2.3 實驗規劃
第3章 實驗結果
3.1 混合式複合染料製程對電池特性之影響
3.1.1 單一染料溶於不同溶劑之光吸收度
3.1.2 單一染料使用不同溶劑之電池I-V特性
3.1.3 混合式複合染料溶於不同溶劑之光吸收度
3.1.4 混合式複合染料使用不同溶劑之電池I-V特性
3.1.5 混合式複合染料依不同體積比例混合之光吸收度
3.1.6 混合式複合染料依不同體積比例混合之電池I-V特性
3.1.7 混合式複合染料相關文獻比較
3.2 逐步式複合染料製程對電池特性之影響
3.2.1 逐步式複合染料先後順序對電池特性之影響
3.2.2 單一N719染料敏化太陽電池於不同超音波處理時間之電池特性
3.2.3 SQ2染料於不同超音波處理時間之光吸收度
3.2.4 逐步型複合染料敏化太陽電池於不同超音波處理時間之電池特性
3.2.5 逐步式複合染料相關文獻比較
3.3 結果與討論
第4章 結論與未來研究工作
參考文獻
簡歷表

[1]National Renewable Energy Laboratory, The National Center for Photovoltaics, [Online]. Available: https://www.nrel.gov/pv/assets/images/efficiency-chart.png, Searching Date: May 15, 2017.
[2]四種薄膜太陽能電池,哪一種會最終勝出?,壹讀,網址:https://read01.com/8dmOMa.html,搜尋日期:2017年5月15日。
[3]H. Gerischer and H. Tributsch, “Elektrochemische untersuchungen zur spektralen sensibilisierung von ZnO-einkristallen,” Berichte Der Bunsengesellschaft Für Physikalische Chemie, vol. 72, pp.437-445, 1968.
[4]H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, “Dye sensitized zinc oxide: aqueous electrolyte: platinum photocell,"Nature, vol. 216, pp. 402-403, 1976.
[5]楊茹媛、翁敏航、陳皇宇、張育綺,「由專利分析看染料敏化太陽能電池趨勢」,光連雙月刊,第75號,2008年。
[6]B. O’Regan and M. Grätzel, “A loss-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol.353, pp.737-739, 1991.
[7]M. K. Nazeeruddin, E. Miiller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of light to electricity by 81 cis-X2bis(2,2‘-bipyridyl-4,4’-icarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” Journal of the American Chemical Society, vol. 115, no. 14, pp. 6382-6390, 1993.
[8]K. Kalyanasundaram and M. Grätzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices,” Coordination Chemistry Reviews, vol. 177, no. 1, pp. 347-414, Oct. 1998.
[9]P. M. Sommeling, M. Späth, J. A. M. V. Roosmalen, and W. C. Sinke, “Dye-semsitized nanocrystalline TiO2 solar cells on flexible substrates,” ECN contributions 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, Vienna, July 6-10 1998.
[10]W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada, and S. Yanagida, “Quasi-solid-State dye-sensitized TiO2 solar cells:  effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine,” Journal of Physical Chemistry B, vol. 105, no. 51, pp. 12809–12815, 2001.
[11]K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara, and H. Arakawa, “Highly efficient photon-to-electron conversion with mercurocome-sensitized nanoporous oxide semiconductor solar cells,” Solar Energy Materials and Solar Cells, vol. 64, no. 2, pp. 115-134, Sep. 2000.
[12]M. K. Nazeeruddin, F. D. Angelis, S. Frantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of hotoelectrochemical cell ruthenium sensitizers,” Journal of the American Chemical Society, vol. 127, no. 48, pp. 16835-16847, 2005.
[13]S. J. Roh, R. S. Mane, S. K. Min, W. J. Lee, C. D. Lokhande, and S. H. Han, “Achievement of 4.51% conversion efficiency using ZnO recombination barrier layer in TiO2 based dye-sensitized solar cells,” Applied Physics Letters, vol. 89, pp. 253512, 2006.
[14]黃建憲,應用於染料敏化太陽能電池之無金屬有機染料於不同環境下之光譜動力學研究,碩士論文,國立交通大學應用化學系,2011。
[15]古宛平,延伸共軛之釕金屬光敏染料合成及其在染料敏化太陽能電池上的應用,碩士論文,國立清華大學化學系,2012。
[16]黃冠智,旋轉塗佈與退火處理應用於染料敏化太陽能電池之研究,碩士論文,國立高雄應用科技大學光電與通訊工程研究所,2009。
[17]徐漢嶸,氧化鋅阻擋層應用於染料敏化太陽能電池之研究,碩士論文,國立高雄應用科技大學光電與通訊工程研究所,2010。
[18]蘇芃因,氧化物阻擋層應用於染料敏化太陽能電池之研究,碩士論文,國立高雄應用科技大學光電與通訊工程研究所,2012。
[19]王繹維,藉由濺鍍氧化鈮阻擋層提升天然染料敏化太陽能電池轉換效率之研究,碩士論文國立高雄應用科技大學,光電與通訊工程研究所,2014。
[20]王冠詠,紅汞與聚維酮碘應用於染料敏化太陽電池研究,碩士論文,國立高雄應用科技大學光電與通訊工程研究所,2015。
[21]朱韻如,利用超音波震盪法加速染料敏化太陽電池製程,碩士論文,國立高雄應用科技大學光電與通訊工程研究所,2015。
[22]L. Y. Lin, M. H. Yeh, C. P. Lee, J. Chang, A. Baheti, R. Vittal, K. R. Justin Thomas, and K. C. Ho, ”Insights into the co-sensitizer adsorption kinetics for complementary organic dye-sensitized solar cells,” Journal of Power Sources, vol. 247, pp. 906–914, Feb. 2014
[23]H. Choi, S. Kim, S. O. Kang, J. Ko, M. S. Kang, J. N. Clifford, A. Forneli, E. Palomares, M. K. Nazeeruddin, and M. Gr¨atzel, “Stepwise cosensitization of nanocrystalline TiO2 films utilizing Al2O3 layers in dye-sensitized solar cells,” Angewandte Chemie International Edition, vol. 47, no. 43, pp. 8259-8263, Oct. 2008.
[24]S. Q. Fan, C. Kim, B. Fang, K. X. Liao, G. J. Yang, C. J. Li, J. J. Kim, and J. Ko, “Improved efficiency of over 10% in dye-sensitized solar cells with a ruthenium complex and an organic dye heterogeneously positioning on a single TiO2 electrode,” The Journal of Physical Chemistry C, vol. 115, no. 22, pp. 7747-7754, Mar. 2011.
[25]R. Y. Y. Lin, Y. S. Yen, Y. T. Cheng, C. P. Lee, Y. C. Hsu, H. H. Chou, C. Y. Hsu, Y. C. Chen, J. T. Lin, K. C. Ho, and C. Tsai, “Dihydrophenantene-based metal-free dyes for highly efficient cosensitized solar cells,” Organic Letters, vol. 14, no. 14, pp. 3612-3615, Jul. 2012.
[26]J. Chang, C. P. Lee, D. Kumar, P. W. Chen, L. Y. Lin, K. R. J. Thomas, and K. C. Ho, “Co-sensitization promoted light harvesting for organic dye-sensitized solar cells using unsymmetrical squaraine dye and novel pyrenoimidazole-based dye,” Journal of Power Sources, vol. 240, pp. 779-785, Oct. 2015.
[27]F. Lodermeyer, D. Costa, J. Malig, N. Jux, and M. Guldi, “Benzoporphyrins: selective co-sensitization in dye-sensitized solar cells,” Chemistry - A European Journal, vol. 22, pp. 7851-7855, Apr. 2016.
[28]Sunlight, Available: https://en.wikipedia.org/wiki/Sunlight, Searching Date: May 15, 2017.
[29]M. Grätzel, “Solar energy conversion by dye-sensitized photovoltaic cells,” Inorganic Chemistry, vol. 44, pp. 6841-6851, Sep. 2005.
[30]T. Geiger, S. Kuster, J. H. Yum, S. J. Moon, M. K. Nazeeruddin, M. Graetzel, and F. Nueesch, “Molecular design of unsymmetrical Squaraine syes for high efficiency conversion of low energy photons into electrons using TiO2 nanocrystalline films,” Advanced Functional Materials, vol. 19, pp. 2720-2727, 2009.
[31]S. Rühle, S. Yahav, S. Greenwald, and A. Zaban, ” Importance of recombination at the TCO/electrolyte interface for high efficiency quantum dot sensitized solar cells,” The Journal of Physical Chemistry C, vol. 116, pp 17473–17478, Jul. 2012.
[32]「染料敏化太陽能電池構造及其製造方法」,中華民國發明專利第I569459號。
[33]比爾定律與吸收度,網址:http://highscope.ch.ntu.edu.tw/wordpress/?p=40839,搜尋日期:2017年5月15日。
[34]謝易璇,染料敏化太陽能電池淺論,網址:http://www.shs.edu.tw/works/essay/2008/10/2008102922390239.pdf,搜尋日期:2017年5月15日。
[35]P. Sirimanne and T. Etampawala, “An enhancement of efficiency of dye-sensitized solar cell by minimizing formation of aggregation of SQ2 dye by co-absorption of N719 dye,” International Journal of Scientific Engineering and Applied Science, vol. 2, pp.168-173, 2016.
[36]Y. J. Chen, L. Y.Lin, W. C. Chang, and S. M. Chang, “Enhancing the spectral response of mesoporous ZnO films of dye–sensitized solar cells by incorporating metal-free organic sensitizer and N719 dye,” Electrochimica Acta, vol. 178, pp. 414-419, 2015.
[37]M. Singh, R. Kurchania, R. J. Ball, and G. D. Sharma, “Efficiency enhancement in dye sensitized solar cells tough step wise cosensitization of TiO2 electrode with N719 and metal free dye,” Indian Journal of Pure & Applied Physics, vol. 54, pp. 656-664, 2016.
[38]L. Wei, Y. Yang, R. Fan, P. Wang, L. Li, J. Yu, B. Yang, and W. Cao, “Enhance the performance of dye-sensitized solar cells by co-sensitization of 2,6-bis(iminoalkyl)pyridine and N719,” Royal Society of Chemistry, vol. 3, pp. 25908–25916, 2013.
[39]S. M. Chang, C. L. Lin, Y. J. Chen, H. C. Wang, W. C. Chang, and L. Y. Lin, “Improved photovoltaic performances of dye-sensitized solar cells with ZnO films co-sensitized by metal-free organic sensitizer and N719 dye,” Organic Electronics, vol. 25, pp. 254-260, 2015.
[40]K. Susmitha, M. Gurulakshmi, M. Naresh Kumar, L. Giribabu, G. Hanumantha Rao, Surya Prakash Singh, S. Narendra Babu, M. Srinivase, and M. Raghavender, “High performance dye anchored counter electrodes with a SPSQ2 sensitizer for dye sensitized solar cell applications,” Materials Chemistry Frontiers, vol. 1, pp. 735-740, 2017.
[41]S. Chang, K. Y. Wong, X. Xiao, and T. Chen, “Effective improvement of the photovoltaic performance of black dye sensitized quasi-solidstate solar cells,” RSC Advances, vol. 4, pp. 31759-31763, 2014.
[42]S. Fan, X. Lu, H. Sun, G. Zhou, Y. J. Changc, and Z. S. Wang, “Effect of the co-sensitization sequence on the performance of dye-sensitized solar cells with porphyrin and organic dyes,” Physical Chemistry Chemical Physics, vol. 18, pp. 932-938, 2016.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top