跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2025/11/29 02:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張皓翔
研究生(外文):Hao-Hsiang Chang
論文名稱:CoVaR 之蒙地卡羅模擬
論文名稱(外文):Monte Carlo Simulation on CoVaR
指導教授:傅承德傅承德引用關係江金倉江金倉引用關係
指導教授(外文):Cheng-Der FuhChin-Tsang Chiang
口試委員:陳宏韓傳祥
口試委員(外文):Hung ChenChuan-Hsiang Han
口試日期:2018-07-02
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用數學科學研究所
學門:數學及統計學門
學類:其他數學及統計學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:42
中文關鍵詞:風險值條件風險值重要抽樣法稀有事件delta-gamma 近似
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文將基於邊際和聯合機率進行 CoVaR 的模擬。此外,將提出重要抽樣法的最佳參數與分位數之間的二次模式,這可以幫助我們更有效率地找到所要估計的分位數。
In this thesis, a simulation of CoVaR based on the marginal and the joint probability would be presented. Also, a quadratic pattern between the optimal parameters of importance sampling and the quantiles will be proposed, which may help us to find the quantiles of interest more efficiently.
口試委員審定書i
致謝ii
摘要iii
Abstract iv
1 Introduction 1
2 Preliminaries 4
2.1 VaR and CoVaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Importance Sampling and Exponential Tilting . . . . . . . . . . . . 6
2.3 Delta-Gamma Approximation . . . . . . . . . . . . . . . . . . . . . 8
3 Simulation under Normal Distribution 11
3.1 Model Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Alternative Distribution . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4 Simulation under t-Distribution 20
4.1 Model Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Alternative Distribution . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5 Numerical Results 29
6 Conclusion Remarks and Further Research 40
[1] Adrian, T. and Brunnermeier, M. K., CoVaR. American Economic Review,
Vol. 106, No. 7, 2016.
[2] Andrews, L. C., Special Functions of Mathematics for Engineers, 1998 (Oxford
University Press).
[3] Bucklew, J. A., Introduction to Rare Event Simulation, 2004 (Springer-Verlag:
New York).
[4] Fuh, C. D. and Hu, I., Efficient importance sampling for events of moderate
deviations with applications. Biometrika 91 (2), 471–490, 2004.
[5] Fuh, C. D., Hu, I., Hsu, Y. H. and Wang, R. H., Efficient simulation of value
at risk with heavy-tailed risk factors. Operations Research, 59, 1395–1406,
2011.
[6] Fuh, C. D. and Wang, C. J., Efficient Simulation for Portfolio Credit Risk in
Normal Mixture Copula Models. arXiv:1711.03744, 2017.
[7] Glasserman, P., Monte Carlo Methods in Financial Engineering, 2004
(Springer: New York).
[8] Glasserman, P., Heidelberger, P., and Shahabuddin, P., Portfolio Value-at-
Risk with heavy-tailed risk factors. Mathematical Finance, 12: 239-269, 2002.
[9] Glasserman, P., Heidelberger, P., and Shahabuddin, P., Variance reduction
techniques for estimating Value-at-Risk. Management Science, 46: 1349-1364,
2000.
[10] Glynn, P. W., Importance sampling for Monte Carlo estimation of quantiles.
In Mathematical Methods in Stochastic Simulation and Experimental Design:
Proc. 2nd St. Petersburg Workshop on Simulation, Publishing House of Saint
Petersburg, 180–185, 1996.
[11] Hall, P. and Martin, M. A., Exact convergence rate of bootstrap quantile
variance estimator. Probability Theory Related Fields, 80, 261–268, 1988.
[12] Hull, J., Options, Futures, and Other Derivatives, 2013 (Pearson Education).
[13] Liu, J., and Yang, X., The convergence rate and asymptotic distribution of
the bootstrap quantile variance estimator for importance sampling. Advances
in Applied Probability, 44, 815–841, 2012.
[14] Magnus, J.A. and Neudecker, H., Matrix Differential Calculus with Applications
in Statistics and Econometrics, 2007 (John Wiley & Sons Ltd).
[15] Mainik, G. and Schaanning, E., On dependence consistency of CoVaR and
some other systemic risk measures. arXiv:1207.3464, 2012.
[16] Ross, S.M., Simulation, 2013 (Academic Press: New York).
[17] Teng, H.W., Fuh, C.D., and Chen, C.C., On an automatic and optimal importance
sampling approach with applications in finance. Quantitative Finance,
16 (8), 1259–1271, 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊