|
1.INITIATIVE, T.N.N., Supplement to the President’s 2018 Budget. 2017: p. 11. 2.Limited., P.S.M.R.P., Global Nanoporous Materials Market Size, Share, Development, Growth and Demand Forecast to 2022 – Industry Insights by Type. 2016. 3.Forty, A.J., Corrosion micromorphology of noble metal alloys and depletion gilding. Nature, 1979. 282. 4.Lehao Liu, M.L., Jing Lyu, Tingkai Zhao, and Tiehu Li, Facile and Green Preparation of Three-Dimensionally Nanoporous Copper Films by Low-Current Electrical Field-Induced Assembly of Copper Nanoparticles for Lithium-Ion Battery Applications. Journal of Materials Engineering and Performance, 2017. 27: p. 4680-4692. 5.J.R. Hayes, A.M.H., J. Biener, A.V. Hamza, K. Sieradzki, Monolithic nanoporous copper by dealloying Mn–Cu. Materials Research Society, 2006. 21. 6.Zhen Qi, C.Z., Xiaoguang Wang, Jikui Lin, Wei Shao, Zhonghua Zhang, and and X. Bian, Formation and Characterization of Monolithic Nanoporous Copper by Chemical Dealloying of Al-Cu Alloys. American Chemical Society, 2008. 7.W.B. Liu, S.C.Z., N. Li, J.W. Zheng, and Y.L. Xing, A Facile OnePot Route to Fabricate Nanoporous Copper with Controlled Hierarchical Pore Size Distributions Through Chemical Dealloying of Al-Cu Alloy in an Alkaline Solution. Microporous Mesoporous Mater, 2011. 138: p. 1-7. 8.T. Song, M.Y., Z. Shi, A. Atrens, and M. Qian, Creation of Bimodal Porous Copper Materials by an Annealing-Electrochemical Dealloying Approach. Electrochim. Acta, 2015. 164: p. 288-296. 9.K.T. Lee, J.C.L., N.S. Ergang, S.M. Oh, and A. Stein, Synthesis and Rate Performance of Monolithic Macroporous Carbon Electrodes for Lithium-Ion Secondary Batteries. Adv. Funct. Mater, 2005. 15: p. 547-556. 10.L. Liu, B.G.C., S.O. Tung, T. Hu, Y. Liu, T. Li, T. Zhao, and N.A. Kotov, Low-Current Field-Assisted Assembly of Copper Nanoparticles for Current Collectors. Faraday Discuss, 2015. 18: p. 383-401. 11.Majid Mirzaee, C.D., Synthesis of nanoporous copper foam-applied current collector electrode for supercapacitor. Iranian Chemical Society, 2018. 12.Lu-Yang Chen, J.-S.Y., Takeshi Fujita, and Ming-Wei Chen, Nanoporous Copper with Tunable Nanoporosity for SERS Applications. Adv. Funct. Mater, 2009. 19: p. 1221-1226. 13.Mei Li, Y.Z., Haoran Geng, Fabrication of nanoporous copper ribbons by dealloying of Al-Cu alloys. Journal of Porous Materials, 2012. 19(5): p. 791-796. 14.Lechtman, H., Pre-Columbian Surface Metallurgy. SCIENTIFIC AMERICAN, 1984. 15.C. Calvert, R.J., XLI.—Action of acids upon metals and alloys. Journal of the Chemical Society, 1886(0): p. 434-454. 16.Jonah Erlebacher, M.J.A., Alain Karma, Nikolay Dimitrov & Karl Sieradzki Evolution of nanoporosity in dealloying. Nature, 2001. 410: p. 450-453. 17.Jonah Erlebacher, R.S., Hard Materials with Tunable Porosity. MRS BULLETIN, 2009. 34: p. 561-569. 18.A.J. Smith, D.L.T., THE PREPARATION OF SKELETAL CATALYSTS. Annual Review of Materials Reasearch, 2005. 35: p. 127-142. 19.Ian McCue, E.B., Bernard Gaskey, and Jonah Erlebacher, Dealloying and Dealloyed Materials. Annual Review of Materials Reasearch, 2016. 46: p. 263-286. 20.Erlebacher, J., An Atomistic Description of Dealloying Porosity Evolution, the Critical Potential, and Rate-Limiting Behavior. Journal of The Electrochemical Society, 2004. 151: p. 614-626. 21.J.Erlebacher, K.S., Pattern formation during dealloying. Scripta Materialia, 2003. 49(10): p. 991-996. 22.K. Sieradzki , R.R.C., K. Shukla & R. C. Newman, Computer simulations of corrosion: Selective dissolution of binary alloys. Philosophical Magazine A, 1989. 59(4): p. 713-746. 23.Artymowicz DM, E.J., Newman RC. , Relationship between the parting limit for de-alloying and a particular geometric high-density site percolation threshold. Philosophical Magazine A, 2009. 89(21): p. 1663-1693. 24.M.Gattrell, N.G.C., A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. Journal of Electroanalytical Chemistry, 2006. 594(1): p. 1-19. 25.Sujat Sen, D.L.a.G.T.R.P., Electrochemical Reduction of CO2 at Copper Nanofoams. ACS Catalysis, 2014. 4: p. 3091-3095. 26.Allen J. Bard, L.R.F., ELECTROCHEMICAL METHODS Fundamentals and Applications. 2001: p. 257-261. 27.Joe Walas, E.C.U. Sealing Glass Ampules or Samples under Vacuum. [cited 2019 July 7]; Available from: http://www.public.asu.edu/~aomdw/ampoule/Page_1.html. 28.Atmospheres, I. What Is Induction Heating? 2019; Available from: http://www.gh-ia.com/induction_heating.html. 29.Gigap Han, J.H.U., Hyeji Park, Kicheol Hong,Won-Sub Yoon, Heeman Choe, Hierarchically structured nanoporous copper for use as lithium-ion battery anode. Scripta Materialia, 2019. 163: p. 9-13. 30.Zhen Qi, C.Z., Xiaoguang Wang, Jikui Lin, Wei Shao, Zhonghua Zhang, and Xiufang Bian, Formation and Characterization of Monolithic Nanoporous Copper by Chemical Dealloying of Al-Cu Alloys. Journal of Physical Chemistry C, 2009. 113: p. 6694-6698. 31.Murray, J.L., The aluminium-copper system. International Metals Reviews, 1985. 30: p. 211-236. 32.A. Ourdjini, J.L.R.E., Eutectic spacing selection in Al–Cu system. Materials Science and Technology, 1994. 10(4): p. 312-318.
|