跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.168) 您好!臺灣時間:2025/09/05 10:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇彥融
研究生(外文):Yan-Rung Su
論文名稱:介金屬化合物對合成奈米多孔結構的影響—探討銅鋁合金的θ與η相
論文名稱(外文):Effect of Intermetallic Compound on Synthesis of Nanoporous Structure with the Focus on θ and η Phases of Copper-Aluminum Alloy
指導教授:鄭憶中
指導教授(外文):I-Chung Cheng
口試委員:陳志軒李岳聯
口試委員(外文):Chih-Hsuan ChenYueh-lien Lee
口試日期:2019-07-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:84
中文關鍵詞:奈米多孔結構去合金化介金屬化合物二氧化碳還原反應
DOI:10.6342/NTU201903091
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米多孔銅有著密度低、質量輕、高表面積、等優點,又擁有良好的導電性、導熱性以及電化學穩定性,可運用於感測、催化劑、鋰電池、表面增強拉曼散射、超級電容、二氧化碳還原等等領域,是前景可期的一項新興材料。本研究旨在探討不同介金屬化合物對合成奈米多孔結構的影響,本研究以銅鋁合金中的θ與η相為例以進行討論,將不同合金相的銅鋁合金透過不同電解液以及溫度的搭配進行選擇性腐蝕以合成在微結構上各有差異的奈米多孔銅,並以二氧化碳還原反應作為應用上的測試。
首先利用真空電弧熔煉法製作四種組成比例的銅鋁前置合金(precursor alloy):Cu18Al82、Cu30Al70、Cu33Al67以及Cu37Al63。此四種合金各自含有不同比例的固溶相(α相)及介金屬化合物(θ相與η相),因此造就了不同的微結構。接著使用不同種類的電解液以及不同的環境溫度對前置合金進行自由腐蝕驅動去合金化,利用元素間還原電位的不同將活性較高的鋁成分選擇性去除,留下活性較低的銅並重組成奈米孔洞結構 (Nanoporous Cu)。藉由掃描式電子顯微鏡與能量散射光譜儀的觀察,確認在銅鋁合金產生奈米孔洞結構的情況。
本研究成功的在銅鋁合金的介金屬化合物相上合成出支架大小分布在29nm~174nm之間的奈米多孔銅結構。在不同形式的θ相同時存在時,奈米孔洞結構並不存在明顯差異。另外,在酸與鹼的電解液中,η相上的反應有所差異,於鹼中無法完全的去合金化。對於二氧化碳還原反應,目前結果顯示,支架越小的材還原效果越好,並且共晶結構所產生的微米-奈米多層次結構,有助於提升還原效果。
In this study, nanoporous copper with ligament sizes ranging from 29 to 174 nm was successfully synthesized by dealloying Cu18Al82, Cu30Al70, Cu33Al67, and Cu37Al63 alloys. The purpose of this study is to investigate the effect of the intermetallic compound on the synthesis of nanoporous structure, and the θ and η phases of copper-aluminum alloy are focused.
Nanoporous copper has the advantages of light in weight, high surface area, good electrical and thermal conductivity, and wonderful electrochemical stability. It can be applied in sensing, catalyst, lithium battery, surface-enhanced Raman scattering, and carbon dioxide reduction, which is being more and more important nowadays.
Firstly, four kinds of compositional copper-aluminum precursor alloys were fabricated by vacuum arc melting: Cu18Al82, Cu30Al70, Cu33Al67, and Cu37Al63. Each of the four alloys contains different ratios of solid solution phase (α phase) and intermetallic compound (θ phase and η phase), thus creating a different microstructure.
Then, the precursor is dealloyed using different kinds of electrolytes and under different temperatures. Aluminum, which is the more electrochemically active element of the two in the precursor alloy, is selectively removed to form nanoporous copper structures (Nanoporous Cu). The effect of concentrations of electrolyte on the resultant nanoporous structure was also evaluated by the use of Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS).
The result shows that when two different kinds of θ phase exist at the same time, there is no significant difference between the two. Besides, the η phase can be completely dealloyed in acid but not in alkali. For the carbon dioxide reduction reaction, the current results show that the smaller the ligament of the nanoporous copper, the better the effect of the CO2 reduction, and the micro-nano multi-layer structure produced by the eutectic phase contributes to the improvement of the reduction effect.
致 謝 II
摘 要 III
Abstract IV
目 錄 V
圖 目 錄 VII
第一章 緒論 1
1.1 奈米材料到奈米多孔金屬材料 1
1.2 奈米多孔銅的發展與現況 3
1.3 研究動機 4
第二章 背景知識與文獻回顧 5
2.1去合金化法 5
2.1.1去合金化法的歷史與現狀 5
2.1.2 去合金化製備奈米多孔金屬的機制 5
2.1.3 去合金化法製造奈米多孔銅的原理 8
2.2 銅的二氧化碳還原反應 10
2.3循環伏安法測試 12
2.4 金屬融煉方式 13
2.4.1 真空封管加熱法 13
2.4.2 感應加熱法 14
2.4.3 真空電弧熔煉法 15
第三章 實驗規劃與實驗方法 17
3.1實驗規劃 17
3.2 實驗設備 19
3.3 實驗方法 26
3.3.1 Cu-Al合金熔煉與試片製備 26
3.3.2 去合金化處理 28
3.3.3 二氧化碳還原 29
第四章 銅鋁前置合金與去合金化結果 31
4.1前置合金 31
4.1.1 銅鋁前置合金的相 31
4.1.2 Cu18Al82 33
4.1.3 Cu30Al70 34
4.1.4 Cu33Al67 37
4.1.5 Cu37Al63 38
4.1.6 不同合金間比較 40
4.2 3wt%HCl自由腐蝕所產生的NPCu 42
4.2.1 前言 42
4.2.2 NPCu-18 42
4.2.3 NPCu-30 46
4.2.4 NPCu-33 50
4.2.5 NPCu-37 53
4.2.6 小結 57
4.3 10wt%NaOH自由腐蝕所產生的NPCu 59
4.3.1 前言 59
4.3.2 NPCu-18 59
4.3.3 NPCu-30 62
4.3.4 NPCu-33 66
4.3.5 NPCu-37 69
4.3.6 小結 74
4.4 二氧化碳還原測試 78
第五章 結論與未來展望 81
參考文獻 83
1.INITIATIVE, T.N.N., Supplement to the President’s 2018 Budget. 2017: p. 11.
2.Limited., P.S.M.R.P., Global Nanoporous Materials Market Size, Share, Development, Growth and Demand Forecast to 2022 – Industry Insights by Type. 2016.
3.Forty, A.J., Corrosion micromorphology of noble metal alloys and depletion gilding. Nature, 1979. 282.
4.Lehao Liu, M.L., Jing Lyu, Tingkai Zhao, and Tiehu Li, Facile and Green Preparation of Three-Dimensionally Nanoporous Copper Films by Low-Current Electrical Field-Induced Assembly of Copper Nanoparticles for Lithium-Ion Battery Applications. Journal of Materials Engineering and Performance, 2017. 27: p. 4680-4692.
5.J.R. Hayes, A.M.H., J. Biener, A.V. Hamza, K. Sieradzki, Monolithic nanoporous copper by dealloying Mn–Cu. Materials Research Society, 2006. 21.
6.Zhen Qi, C.Z., Xiaoguang Wang, Jikui Lin, Wei Shao, Zhonghua Zhang, and and X. Bian, Formation and Characterization of Monolithic Nanoporous Copper by Chemical Dealloying of Al-Cu Alloys. American Chemical Society, 2008.
7.W.B. Liu, S.C.Z., N. Li, J.W. Zheng, and Y.L. Xing, A Facile OnePot Route to Fabricate Nanoporous Copper with Controlled Hierarchical Pore Size Distributions Through Chemical Dealloying of Al-Cu Alloy in an Alkaline Solution. Microporous Mesoporous Mater, 2011. 138: p. 1-7.
8.T. Song, M.Y., Z. Shi, A. Atrens, and M. Qian, Creation of Bimodal Porous Copper Materials by an Annealing-Electrochemical Dealloying Approach. Electrochim. Acta, 2015. 164: p. 288-296.
9.K.T. Lee, J.C.L., N.S. Ergang, S.M. Oh, and A. Stein, Synthesis and Rate Performance of Monolithic Macroporous Carbon Electrodes for Lithium-Ion Secondary Batteries. Adv. Funct. Mater, 2005. 15: p. 547-556.
10.L. Liu, B.G.C., S.O. Tung, T. Hu, Y. Liu, T. Li, T. Zhao, and N.A. Kotov, Low-Current Field-Assisted Assembly of Copper Nanoparticles for Current Collectors. Faraday Discuss, 2015. 18: p. 383-401.
11.Majid Mirzaee, C.D., Synthesis of nanoporous copper foam-applied current collector electrode for supercapacitor. Iranian Chemical Society, 2018.
12.Lu-Yang Chen, J.-S.Y., Takeshi Fujita, and Ming-Wei Chen, Nanoporous Copper with Tunable Nanoporosity for SERS Applications. Adv. Funct. Mater, 2009. 19: p. 1221-1226.
13.Mei Li, Y.Z., Haoran Geng, Fabrication of nanoporous copper ribbons by dealloying of Al-Cu alloys. Journal of Porous Materials, 2012. 19(5): p. 791-796.
14.Lechtman, H., Pre-Columbian Surface Metallurgy. SCIENTIFIC AMERICAN, 1984.
15.C. Calvert, R.J., XLI.—Action of acids upon metals and alloys. Journal of the Chemical Society, 1886(0): p. 434-454.
16.Jonah Erlebacher, M.J.A., Alain Karma, Nikolay Dimitrov & Karl Sieradzki Evolution of nanoporosity in dealloying. Nature, 2001. 410: p. 450-453.
17.Jonah Erlebacher, R.S., Hard Materials with Tunable Porosity. MRS BULLETIN, 2009. 34: p. 561-569.
18.A.J. Smith, D.L.T., THE PREPARATION OF SKELETAL CATALYSTS. Annual Review of Materials Reasearch, 2005. 35: p. 127-142.
19.Ian McCue, E.B., Bernard Gaskey, and Jonah Erlebacher, Dealloying and Dealloyed Materials. Annual Review of Materials Reasearch, 2016. 46: p. 263-286.
20.Erlebacher, J., An Atomistic Description of Dealloying Porosity Evolution, the Critical Potential, and Rate-Limiting Behavior. Journal of The Electrochemical Society, 2004. 151: p. 614-626.
21.J.Erlebacher, K.S., Pattern formation during dealloying. Scripta Materialia, 2003. 49(10): p. 991-996.
22.K. Sieradzki , R.R.C., K. Shukla & R. C. Newman, Computer simulations of corrosion: Selective dissolution of binary alloys. Philosophical Magazine A, 1989. 59(4): p. 713-746.
23.Artymowicz DM, E.J., Newman RC. , Relationship between the parting limit for de-alloying and a particular geometric high-density site percolation threshold. Philosophical Magazine A, 2009. 89(21): p. 1663-1693.
24.M.Gattrell, N.G.C., A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. Journal of Electroanalytical Chemistry, 2006. 594(1): p. 1-19.
25.Sujat Sen, D.L.a.G.T.R.P., Electrochemical Reduction of CO2 at Copper Nanofoams. ACS Catalysis, 2014. 4: p. 3091-3095.
26.Allen J. Bard, L.R.F., ELECTROCHEMICAL METHODS Fundamentals and Applications. 2001: p. 257-261.
27.Joe Walas, E.C.U. Sealing Glass Ampules or Samples under Vacuum. [cited 2019 July 7]; Available from: http://www.public.asu.edu/~aomdw/ampoule/Page_1.html.
28.Atmospheres, I. What Is Induction Heating? 2019; Available from: http://www.gh-ia.com/induction_heating.html.
29.Gigap Han, J.H.U., Hyeji Park, Kicheol Hong,Won-Sub Yoon, Heeman Choe, Hierarchically structured nanoporous copper for use as lithium-ion battery anode. Scripta Materialia, 2019. 163: p. 9-13.
30.Zhen Qi, C.Z., Xiaoguang Wang, Jikui Lin, Wei Shao, Zhonghua Zhang, and Xiufang Bian, Formation and Characterization of Monolithic Nanoporous Copper by Chemical Dealloying of Al-Cu Alloys. Journal of Physical Chemistry C, 2009. 113: p. 6694-6698.
31.Murray, J.L., The aluminium-copper system. International Metals Reviews, 1985. 30: p. 211-236.
32.A. Ourdjini, J.L.R.E., Eutectic spacing selection in Al–Cu system. Materials Science and Technology, 1994. 10(4): p. 312-318.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊