跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/07 04:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳敏嘉
研究生(外文):Chen, Min-Chia
論文名稱:3D列印聚己內酯支架搭配血小板豐富血漿纖維蛋白對大白鼠頭蓋骨缺損再生之效果
論文名稱(外文):Effect of Computer-designed 3D-Printed Poly ɛ-caprolactone Scaffolds and Plasma-rich fibrin on Bone Formation in Calvarial Defects in Rats
指導教授:邱賢忠
指導教授(外文):Chiu, Hsien-Chung
口試委員:傅鍔江正陽
口試委員(外文):Fu, EarlChiang, Cheng-Yang
口試日期:2018-05-10
學位類別:碩士
校院名稱:國防醫學院
系所名稱:牙醫科學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:21
中文關鍵詞:3D列印骨再生組織工程
外文關鍵詞:tissue engineering3dimensional printinganimal experimentBone regeneration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:379
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
實驗目的:本實驗測試使用電腦輔助設計並3D 列印出之聚己內酯(PCL)組織工程支架搭配血小板濃厚纖維蛋白生長因子(PRF)於大白鼠頭蓋骨人造缺損區植入後之新骨生成的效果。
材料方法:48隻SD 鼠的頭蓋骨上人造出兩個6公釐直徑圓形缺損,並分組:控制組(Empty)、PCL、PRF、PCL+PRF 四個組別,分別於四週及八週後犧牲取標本,以牙科放射照射(Dental radiography), 微米級電腦斷層掃描造影系統(Micro-CT),及組織切片分別檢驗新骨生成結果並統計。
實驗結果:牙科放射取像及電腦斷層掃描缺損區的影像顯示, PCL 及PCL+PRF 兩組產生獨特格狀的放射不透光區域,PCL 及PCL+PRF 兩組的放射不透光區域於四週及八週的中央區(四公釐半徑) 相比於控制組及PRF 組於組織礦化的面積(Area,mm2)及比例(BV/TV,%)有統計差異。組織切片染色結果也顯示新骨長入3D 列印組織支架的結構中,有支架組別中央區的新骨面積(Area,mm2)也比沒有植入支架的多且有統計差異。
結論:於大鼠的人造頭蓋骨缺損中,使用電腦設計的組織支架於骨再生工程的策略有益處。3D列印聚己內酯支架組織工程支架可以促進新骨再生分佈位置及維持缺損區外型。聚己內酯組織支架在4週及8週時顯示可以增加新骨中央區域生成的數量及比例,然而進一步的機轉仍需繼續探討。血小板濃厚纖維蛋白生長因子在本實驗中不論是單獨或與組織支架合併使用都沒有顯示出差異性效果。

Background: In guiding bone formation, creating an adequate space is critical due to defect complexity.  In this study, a polycaprolactones (PCL) scaffold, computer designed and 3D-printed, was implanted into the critical-sized calvaria defect in rat, whereas the effect of plasma-rich fibrin (PRF) on the bone formation was also tested.
Methods:  Two round defects, 6 mm in diameter, were surgically created in parietal bones of 32 rats, then 4 defect groups, including defect control, PRF, PCL, and PCL-plus-PRF (PRF+PCL), were divided according to scaffold implantation and PRF delivery.  Four and eight weeks after, half of the rats were sacrificed, respectively. Bone formation was assessed by dental radiography, micro-computed tomography (µ-CT), and histology.
Results: By dental radiography and µ-CT, the radio-opaque row-by-row squares were observed in the defects of PCL and PCL+PRF groups. The opaque areas/volumes, as well as their relative values (areas/volumes), in defects were similar among 4 groups; however, significantly greater values were noted in central, but not peripheral zone in the groups with PCL (PCL and PRF+PCL groups) than those without PCL (defect control and PRF groups). By histology, the bones formed in the spaces between PCL struts; however, there was no bones-struts contact observed. Histometry showed that the tissue areas were significant greater in the groups with PCL than that without, particularly in central zone, in spite of the intervals. In week 8, similar findings were observed, including the bone and connective tissue areas. Similar areas for PCL residuals were observed in the PCL and the PRF+PCL groups. (太長)
Conclusions: In the critical-sized calvarial defect of rat, our results showed the bones formed within the spaces supported by the computer-designed 3D-printed PCL scaffold but no contact with PCL struts. Strategy of using the customized scaffold for supporting spaces in augmenting bone formation is therefore suggested.
第一章、緒言 1
第二章、材料與方法 3
第一節、電腦輔助設計製造3D列印支架 3
第二節、血小板濃厚纖維蛋白質製備 4
第三節、動物實驗執行 5
第四節、牙科放射線照射取像 6
第五節、組織切片製備 7
第六節、統計結果 8
第三章、結果 9
第四章、討論 17
第五章、結論 19
第六章、參考文獻 20
1、Bartnikowski, M., Klein, T. J., Melchels, F. P. & Woodruff, M. A.:Effects of scaffold architecture on mechanical characteristics and osteoblast response to static and perfusion bioreactor cultures. Biotechnol Bioeng 111: 1440-1451, 2014
2、Cha, Y. & Pitt, C. G.:The biodegradability of polyester blends. Biomaterials 11:108-112, 1990
3、Dhanaraju, M. D., Gopinath, D., Ahmed, M. R., Jayakumar, R. & Vamsadhara, C.:Characterization of polymeric poly(epsilon-caprolactone) injectable implant delivery system for the controlled delivery of contraceptive steroids. J Biomed Mater Res A 76: 63-72, 2006
4、Dohan, D. M., Choukroun, J., Diss, A., Dohan, S. L., Dohan, A. J., Mouhyi, J. & Gogly, B.: Platelet-rich fibrin (prf):A second-generation platelet concentrate.Part i: Technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101: e37-44, 2006
5、Frazza, E. J. & Schmitt, E. E.:A new absorbable suture. J Biomed Mater Res 5: 43-58, 1971
6、Goldschlager, T., Abdelkader, A., Kerr, J., Boundy, I. & Jenkin, G.:Undecalcified bone preparation for histology, histomorphometry and fluorochrome analysis. J Vis Exp, 2010
7、Hutmacher, D. W., Schantz, T., Zein, I., Ng, K. W., Teoh, S. H. & Tan, K. C.:Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 55: 203-216, 2001
8、Jensen, J., Rolfing, J. H., Le, D. Q., Kristiansen, A. A., Nygaard, J. V., Hokland, L. B., Bendtsen, M., Kassem, M., Lysdahl, H. & Bunger, C. E.:Surface-modified functionalized polycaprolactone scaffolds for bone repair: In vitro and in vivo experiments. J Biomed Mater Res A 102: 2993-3003, 2014
9、Kmiec, Z. J.A. Kiernan.:Histological and histochemical methods: Theory and practice. 5th edition, scion publishing, 571 pp. Folia Histochem Cytobiol 54: 58-59, 2015
10、Kretlow, J. D., Spicer, P. P., Jansen, J. A., Vacanti, C. A., Kasper, F. K. & Mikos, A.G.:Uncultured marrow mononuclear cells delivered within fibrin glue hydrogels to porous scaffolds enhance bone regeneration within critical-sized rat cranial defects. Tissue Eng Part A 16: 3555-3568, 2010
11、Nakatani, Y., Agata, H., Sumita, Y., Koga, T. & Asahina, I.:Efficacy of freezedried platelet-rich plasma in bone engineering. Arch Oral Biol 73: 172-178, 2017
12、Ng, K. W., Achuth, H. N., Moochhala, S., Lim, T. C. & Hutmacher, D. W.: In vivo evaluation of an ultra-thin polycaprolactone film as a wound dressing. J Biomater Sci Polym Ed 18: 925-938, 2007
13、Schantz, J. T., Hutmacher, D. W., Lam, C. X., Brinkmann, M., Wong, K. M., Lim, T. C., Chou, N., Guldberg, R. E. & Teoh, S. H.:Repair of calvarial defects with customised tissue-engineered bone grafts ii. Evaluation of cellular efficiency and efficacy in vivo. Tissue Eng 9 Suppl 1: S127-139, 2003
14、Simonpieri, A., Del Corso, M., Vervelle, A., Jimbo, R., Inchingolo, F., Sammartino, G. & Dohan Ehrenfest, D. M.:Current knowledge and perspectives for the use of platelet-rich plasma (prp) and platelet-rich fibrin (prf) in oral and maxillofacial surgery part 2: Bone graft, implant and reconstructive surgery. Curr Pharm Biotechnol 13: 1231-1256, 2012
15、Thavornyutikarn, B., Chantarapanich, N., Sitthiseripratip, K., Thouas, G. A. & Chen, Q.:Bone tissue engineering scaffolding: Computer-aided scaffolding techniques. Prog Biomater 3: 61-102, 2014
16、Vajgel, A., Mardas, N., Farias, B. C., Petrie, A., Cimoes, R. & Donos, N.: A systematic review on the critical size defect model. Clin Oral Implants Res 25: 879-893, 2014
17、Woodruff, M. A. & Hutmacher, D. W.:The return of a forgotten polymer—polycaprolactone in the 21st century. Progress in Polymer Science 35: 1217-1256, 2010

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊