跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/01 23:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉慧鈴
研究生(外文):Hui-Ling Yeh
論文名稱:衣藻 (Chlamydomonas reinhardtii) Monodehydroascorbate Reductase於逆境下之重要性
論文名稱(外文):The Importance of Monodehydroascorbate Reductase in Chlamydomonas reinhardtii in Response to Abiotic Stress
指導教授:張欣暘李澤民李澤民引用關係
指導教授(外文):Hsin-Yang ChangTse-Min Lee
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋生物科技暨資源學系研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:112
中文關鍵詞:Monodehydroascorbate reductase (MDAR)Ascorbic acid (AsA)非生物逆境衣藻 (Chlamydomonas reinhardtii)耐受性
外文關鍵詞:Monodehydroascorbate reductase (MDAR)toleranceabiotic stressAscorbic acid (AsA)Chlamydomonas reinhardtii
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
Monodehydroascorbate reductase (MDAR) 為一種抗氧化酵素,能夠使monodehydroascorbate (MDA) 還原為 ascorbate (ASA),並維持高 ASA 濃度來抵抗氧化逆境。為了解衣藻 (Chlamydomonas reinhardtii P. A. Dang) CrMDAR1 (Cre17.g712100.t1.2) 於逆境中所扮演之角色,本研究首先利用重組蛋白證實Cre17.g712100.t1.2 為具有 MDAR 活性之基因。接著,透過過度表達 (overexpression) 與抑制表達 (downregulation) MDAR 調控 AsA 再生對於非生物逆境耐受性之重要性。首先,MDAR 基因片段轉型入衣藻中,並調控其基因表現。過度表達 CrMDAR1 轉殖株經 pChlamy3 vector 轉殖,並利用 Hsp70A:RbcS2 來啟動,所得轉殖株為 MDAR1_’5, ’49, ’81與’93;而抑制表達 CrMDAR1 轉殖株材料為經 pChlamiRNA3 vector 轉殖 PSAD::CrMDAR1-amiRNA 所獲得轉殖株為 MDAR1_ami 30 與 MDAR1_ami 36。過度表達轉殖株在高光強逆境 (1,800 mol m-2 s-1)下存活率顯著較高,其 MDAR 活性、基因表現皆顯著高於對照組,且降低脂質過氧化程度,AsA 轉換效率也提高,使得 DHA 含量降低;在抑制表達轉殖株經高光強處理 (1,400 mol m-2 s-1) 後,其所有表現則與過度表達轉殖株相反,在其他逆境 (NaCl、MV 與 H2O2) 中之細胞存活率與高光強結果相似,細胞存活率皆是高於對照組。綜合以上結果,改變衣藻 MDAR 活性能夠影響 AsA 再生效率及氧化逆境之傷害。
Monodehydroascorbate reductase (MDAR) is an antioxidant enzyme that converts oxidized ascorbate (MDA) to ascorbate (ASA) to maintain high ASA concentration for algae against oxidative stress. In this study, whether the annotated Chlamydomonas reinhardtii P. A. Dang CrMDAR1 (Cre17.g712100.t1.2) showed MDAR activity was first identified. Using the recombinant protein, we identified that the gene Cre17.g712100.t1.2 was MDAR. Next, the role of CrMDAR1 in response to abiotic stress were performed on C. reinhardtii via overexpression and downregulation of CrMDAR1. We have obtained four CrMDAR1-overexpressing lines (MDAR1_’5, 49, 81 and ‘93) and two CrMDAR1-knockdown lines (MDAR1_ami 30 and 36). Overexpression lines can increase their survival, MADR activity, mRNA abundance, AsA concentration, and AsA/DHA (dehydroascorbate) ratio, and induced lower lipid peroxidation after high-intensity illumination (1,800 μmol m-2 s-1). The CrMDAR1-knockdown lines showed a contrast result in response to 1,400 μmol m-2 s-1 illumination. Cell viability in response to other stresses (NaCl, MV, and H2O2) appeared a similar result to that under high light stress. In conclusion, ASA conversion efficiency (AsA/DHA ratio) and the damage of oxidative stress of C. reinhardtii was affected by CrMDAR1 overexpression/downregulation in response to abiotic stress.
摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xii
1. 緒論 13
1.1 前言 13
1.2 研究目的與架構 14
2. 文獻回顧 16
2.1 衣藻 (Chlamydomonas reinhardtii) 介紹及栽培 16
2.2 微藻基因工程之發展 16
2.2.1微藻基因轉殖之工具 17
2.2.2轉殖株及其穩定性 18
2.2.3 轉殖基因之抗生素 18
2.2.4 RNA干擾 18
2.3 Ascorbate-glutathione cycle (AGC) 19
2.3.1 Monodehydroascorbate reductase (MDAR)簡介 20
2.3.2 Ascorbic acid (AsA)之介紹 21
2.3.3 MDAR 與 AsA 關係 22
2.4 逆境對於微藻及MDAR的影響 23
2.4.1高光強逆境 (high light stress) 24
2.4.2高鹽度逆境 (high salt stress) 25
2.4.3 MV逆境 (Methyl viologen stress) 25
2.4.4 H2O2逆境 (Hydrogen peroxide stress) 26
2.5為什麼MDAR作為本研究方向 26
3. 材料與方法 27
3.1 藻類栽培 27
3.2 構築載體 27
3.2.1 CrMDAR1 過度表達載體 (pChlamy3-CrMDAR1) 構建 27
3.2.2 CrMDAR1 amiRNA 表達載體 (pChlamiRNA3-CrMDAR1) 構建 31
3.3 藻類轉殖 34
3.4 藻類遺傳特性篩選 35
3.5.1 藻類 DNA (colony PCR) 35
3.5.2 Total RNA 萃取 36
3.4.3 cDNA 合成 36
3.4.4 Real-time PCR (RT-PCR)測定 37
3.5 生化特質篩選 37
3.6.1 蛋白質含量分析 37
3.6.2 MDAR之萃取、活性與Km、Vm值分析 38
3.6 生理功能特質鑑定 39
3.6.1 高光處理 39
3.6.2 MV處理 39
3.6.3 H2O2處理 39
3.6.4 NaCl處理 40
3.6.5 Ascorbate (ASA) 含量測定 40
3.6.6 脂質過氧化 (lipid peroxidation) 程度之測定 41
3.6.7細胞存活率計數 42
3.7 統計分析方法 42
4. 結果 43
4.1 探討 MDAR 活性之條件 43
4.2 單胞藻 CrMDAR1 分子特性分析 44
4.3 載體構築及篩選 45
4.3.1 CrMDAR1 過度表達轉殖 45
4.3.2 CrMDAR1抑制表達轉殖 46
4.4 逆境對 CrMDAR1 生理表現之影響 48
4.4.1 高光強逆境 48
4.4.2 高鹽度逆境 51
4.4.3 MV逆境 52
4.4.4 H2O2逆境 53
5. 討論 55
6. 結論與展望 60
6.1 結論 60
6.2 展望 61
7. 參考文獻 62
王潮崗, 胡章立. (2005). 莱茵衣藻细胞核轉化系统研究進展 仲愷農業技術學院學報 (Vol. 18, pp. 59-64).
劉洋, 曾慶樂, 唐紅艷, 高珊, 楊治仁, 張頌, 劉建川. (2011). 绿色化學試劑過氧化氫在有機合成中的應用研究進展.
范國昌, 山松, 錢凱先, 沈桂芳. (1998). 葉綠體基因工程研究的理想材料-衣藻. 生物學通報, 32( 2), 13-15
Alvarez, John Paul, Pekker, Irena, Goldshmidt, Alexander, Blum, Eyal, Amsellem, Ziva, and Eshed, Yuval. (2006). Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. The Plant Cell, 18(5), 1134-1151.
Ambros, Victor. (2001). microRNAs: tiny regulators with great potential. Cell, 107(7), 823-826.
Apel, Klaus, and Hirt, Heribert. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review. Plant Biology., 55, 373-399.
Armbrust, E Virginia. (1999). Identification of a New Gene Family Expressed during the Onset of Sexual Reproduction in the Centric DiatomThalassiosira weissflogii. Applied and Environmental Microbiology, 65(7), 3121-3128.
Asada, K. (1997). The role of ascorbate peroxidase and monodehydroascorbate reductase in H2O2 scavenging in plants. Oxidatives Stress and the Molecular Biology of Antioxidant Defenses., 715-735.
Asada, Kozi. (1999). The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Biology, 50(1), 601-639.
Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27(1), 84-93.
Babbs, Charles F, Pham, Jo Ann, and Coolbaugh, Ronald C. (1989). Lethal hydroxyl radical production in paraquat-treated plants. Plant Physiology, 90(4), 1267-1270.
Baymann, Franke, Zito, Francesca, Kuras, Richard, Minai, Limor, Nitschke, Wolfgang, and Wollman, Francis-André. (1999). Functional characterization of Chlamydomonas mutants defective in cytochrome f maturation. Journal of Biological Chemistry, 274(33), 22957-22967.
Boynton, John E, Gillham, Nicholas W, Harris, Elizabeth H, Hosler, Jonathan P, Johnson, Anita M, Jones, Allan R, Randolph-Anderson, Barbara L, Robertson, Dominique, Klein, Ted M, and Shark, Katherine B. (1988). Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science, 240(4858), 1534-1538.
Bradford, Marion M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254.
Brown, Lisa Eve, Sprecher, SL, and Keller, LR. (1991). Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation. Molecular and Cellular Biology, 11(4), 2328-2332.
Caverzan, Andréia, Bonifacio, Aurenivia, Carvalho, Fabricio EL, Andrade, Claudia MB, Passaia, Gisele, Schünemann, Mariana, dos Santos Maraschin, Felipe, Martins, Marcio O, Teixeira, Felipe K, and Rauber, Rafael. (2014). The knockdown of chloroplastic ascorbate peroxidases reveals its regulatory role in the photosynthesis and protection under photo-oxidative stress in rice. Plant Science, 214, 74-87.
Chang, Hsueh-Ling, Kang, Cheng-Yang, and Lee, Tse-Min. (2013). Hydrogen peroxide production protects Chlamydomonas reinhardtii against light-induced cell death by preventing singlet oxygen accumulation through enhanced carotenoid synthesis. Journal of Plant Physiology, 170(11), 976-986.
Chang, HY, Lin, ST, Ko, TP, Wu, SM, Lin, TH, Chang, YC, Huang, KF, and Lee, TM. (2017). Enzymatic characterization and crystal structure analysis of Chlamydomonas reinhardtii dehydroascorbate reductase and their implications for oxidative stress. Plant Physiology and Biochemistry, 120, 144-155.
Chen, Hsin Liang, Li, Si Shen, Huang, Rang, and Tsai, Huai‐Jen. (2008). Conditional production of a functional fish growth hormone in the transgenic line of Nannochloropsis oculata (Eustigmatophyceae). Journal of Phycology, 44(3), 768-776.
Chen, Z , Young, TE, Ling, J, Chang, SC, and Gallie, DR. (2003). Increasing vitamin C content of plants through enhanced ascorbate recycling. Proceedings of the National Academy of Sciences, 100(6), 3525-3530.
Chen, Zhong, and Gallie, Daniel R. (2006). Dehydroascorbate reductase affects leaf growth, development, and function. Plant Physiology, 142(2), 775-787.
Crutchfield, Alexandra, Diller, Kenneth, and Brand, Jerry. (1999). Cryopreservation of Chlamydomonas reinhardtii (Chlorophyta). European Journal of Phycology, 34(1), 43-52.
Davey, Mark W, and Keulemans, Johan. (2004). Determining the potential to breed for enhanced antioxidant status in Malus: mean inter-and intravarietal fruit vitamin C and glutathione contents at harvest and their evolution during storage. Journal of Agricultural and Food Chemistry, 52(26), 8031-8038.
Dawson, Hana N, Burlingame, Richard, and Cannons, Andrew C. (1997). Stable transformation of Chlorella: rescue of nitrate reductase-deficient mutants with the nitrate reductase gene. Current Microbiology, 35(6), 356-362.
De Pinto, MC, Francis, D, and De Gara, L. (1999). The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. Protoplasma, 209(1-2), 90-97.
Debuchy, Robert, Purton, Saul, and Rochaix, Jean-David. (1989). The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. The EMBO Journal, 8(10), 2803-2809.
Dunahay, TG. (1993). Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. Biotechniques, 15(3), 452-455, 457-458, 460.
Elbashir, Sayda M, Lendeckel, Winfried, and Tuschl, Thomas. (2001). RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes & Development, 15(2), 188-200.
Eltayeb, Amin Elsadig, Kawano, Naoyoshi, Badawi, Ghazi Hamid, Kaminaka, Hironori, Sanekata, Takeshi, Morishima, Isao, Shibahara, Toshiyuki, Inanaga, Shinobu, and Tanaka, Kiyoshi. (2006). Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiologia Plantarum, 127(1), 57-65.
Eltayeb, Amin Elsadig, Kawano, Naoyoshi, Badawi, Ghazi Hamid, Kaminaka, Hironori, Sanekata, Takeshi, Shibahara, Toshiyuki, Inanaga, Shinobu, and Tanaka, Kiyoshi. (2007). Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta, 225(5), 1255-1264.
Fire, Andrew, Xu, Si Qun, Montgomery, Mary K, Kostas, Steven A, Driver, Samuel E, andMello, Craig C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669), 806.
Freese, SD, Nozaic, D, Pryor, MJ, Trollip, DL, andSmith, RA. (1999). Comparison of ozone and hydrogen peroxide/ozone for the treatment of eutrophic water. Water Science and Technology, 39(10-11), 325-328.
Fuhrmann, Markus, Stahlberg, Alke, Govorunova, Elena, Rank, Simone, and Hegemann, Peter. (2001). The abundant retinal protein of the Chlamydomonas eye is not the photoreceptor for phototaxis and photophobic responses. Journal of Cell Science, 114(21), 3857-3863.
Gallie, Daniel R. (2012). The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. Journal of Experimental Botany, 64(2), 433-443.
Gallie, Daniel R. (2013). L-ascorbic acid: a multifunctional molecule supporting plant growth and development. Scientifica, 2013.
Gest, Noé, Gautier, Hélène, and Stevens, Rebecca. (2012). Ascorbate as seen through plant evolution: the rise of a successful molecule? Journal of Experimental Botany, 64(1), 33-53.
Gest, Noé, Page, David, Birtic, S, Gouble, Barbara, Gilbert, Louise, Garchery, Cécile, Causse, Mathilde, and Stevens, Rebecca. (2010). Response of the fruit antioxidant system to the post-chilling period in two different tomato lines. Functional Plant Science and Biotechnology, 4, 76-83.
Gill, Sarvajeet Singh, and Tuteja, Narendra. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930.
Grossman, Arthur R. (2000). Chlamydomonas reinhardtii and photosynthesis: genetics to genomics. Current Opinion in Plant Biology, 3(2), 132-137.
Hancock, Robert D, and Viola, Roberto. (2005). Biosynthesis and catabolism of L-ascorbic acid in plants. Critical Reviews in Plant Sciences, 24(3), 167-188.
He, Xuexiang, Armah, A, and Dionysiou, Dionysios D. (2013). Destruction of cyanobacterial toxin cylindrospermopsin by hydroxyl radicals and sulfate radicals using UV-254 nm activation of hydrogen peroxide, persulfate and peroxymonosulfate. Journal of Photochemistry and Photobiology A: Chemistry, 251, 160-166.
Heath, Robert L, and Packer, Lester. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198.
Horemans, Nele, Foyer, Christine H, Potters, Geert, and Asard, Han. (2000). Ascorbate function and associated transport systems in plants. Plant Physiology and Biochemistry, 38(7-8), 531-540.
Hossain, M Anwar, Nakano, Yoshiyuki, andAsada, Kozi. (1984). Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant and Cell Physiology, 25(3), 385-395.
Huang, X, Weber, JC, Hinson, TK, Mathieson, AC, and Minocha, SC. (1996). Transient expression of the GUS reporter gene in the protoplasts and partially digested cells of Ulva lactuca L.(Chlorophyta) Botanica Marina, P. 476.
Jaleel, Cheruth Abdul, Riadh, Ksouri, Gopi, Ragupathi, Manivannan, Paramasivam, Ines, Jallali, Al-Juburi, Hameed Jasim, Chang-Xing, Zhao, Hong-Bo, Shao, and Panneerselvam, Rajaram. (2009). Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiologiae Plantarum, 31(3), 427-436.
Jithesh, MN, Prashanth, SR, Sivaprakash, KR, and Parida, Ajay K. (2006). Antioxidative response mechanisms in halophytes: their role in stress defence. Journal of Genetics, 85(3), 237.
Kavitha, Kumaresan, George, Suja, Venkataraman, Gayatri, and Parida, Ajay. (2010). A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants. Biochimie, 92(10), 1321-1329.
Kay, SH, Quimby, PC, and Ouzts, JD. (1982). Hydrogen peroxide: A potential algicide for aquaculture. Paper presented at the Proceedings of the Southern Weed Science Society.
Khvorova, Anastasia, Reynolds, Angela, and Jayasena, Sumedha D. (2003). Functional siRNAs and miRNAs exhibit strand bias. Cell, 115(2), 209-216.
Kim, Young-Saeng, Kim, Il-Sup, Bae, Mi-Jung, Choe, Yong-Hoe, Kim, Yul-Ho, Park, Hyang-Mi, Kang, Hong-Gyu, and Yoon, Ho-Sung. (2013). Homologous expression of cytosolic dehydroascorbate reductase increases grain yield and biomass under paddy field conditions in transgenic rice (Oryza sativa L. japonica). Planta, 237(6), 1613-1625.
Kindle, Karen L. (1990). High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences, 87(3), 1228-1232.
Kotchoni, Simeon O, and Gachomo, Emma W. (2006). The reactive oxygen species network pathways: an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants. Journal of Biosciences, 31(3), 389-404.
Kwon, SY, Ahn, YO, Lee, HS, and Kwak, SS. (2001). Biochemical characterization of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. BMB Reports, 34(4), 316-321.
Kwon, SY, Choi, SM, Ahn, YO, Lee, HS, Lee, HB, Park, YM, and Kwak, SS. (2003). Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. Journal of Plant Physiology, 160(4), 347-353.
Kwon, SY, Jeong, YJ, Lee, HS, Kim, JS, Cho, KY, Allen, RD, and Kwak, SS. (2002). Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen‐mediated oxidative stress. Plant, Cell & Environment, 25(7), 873-882.
Lasat, Mitch M, DiTomaso, Joseph M, Hart, Jonathan J, and Kochian, Leon V. (1997). Evidence for vacuolar sequestration of paraquat in roots of a paraquat‐resistant Hordeum glaucum biotype. Physiologia Plantarum, 99(2), 255-262.
Lehoczki, E, Laskay, G, Gaal, I, and Szigeti, Z. (1992). Mode of action of paraquat in leaves of paraquat‐resistant Conyza canadensis (L.) Cronq. Plant, Cell & Environment, 15(5), 531-539.
Leterrier, Marina, Corpas, Francisco J, Barroso, Juan B, Sandalio, Luisa M, and Luis, A. (2005). Peroxisomal monodehydroascorbate reductase. Genomic clone characterization and functional analysis under environmental stress conditions. Plant Physiology, 138(4), 2111-2123.
Li, Feng, Wu, Qing‐Yun, Sun, Yan‐Li, Wang, Li‐Yan, Yang, Xing‐Hong, and Meng, Qing‐Wei. (2010). Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen‐mediated oxidative stresses. Physiologia Plantarum, 139(4), 421-434.
Lim, Soon, Kim, Yun-Hee, Kim, Sun-Hyung, Kwon, Suk-Yoon, Lee, Haeng-Soon, Kim, Jin-Seog, Cho, Kwang-Yun, Paek, Kee-Yoeup, and Kwak, Sang-Soo. (2007). Enhanced tolerance of transgenic sweetpotato plants that express both CuZnSOD and APX in chloroplasts to methyl viologen-mediated oxidative stress and chilling. Molecular Breeding, 19(3), 227-239.
Lin, Shu-Tseng, Chiou, Chih-Wen, Chu, Yen-Lin, Hsiao, Yu, Tseng, Yu-Fei, Chen, Yi-Chun, Chen, Hsien-Jung, Chang, Hsin-Yang, and Lee, Tse-Min. (2016). Enhanced ascorbate regeneration via dehydroascorbate reductase confers tolerance to photo-oxidative stress in Chlamydomonas reinhardtii. Plant and Cell Physiology, 57(10), 2104-2121.
Mahajan, Shilpi, and Tuteja, Narendra. (2005). Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics, 444(2), 139-158.
Mano, Jun’ichi, Ohno, Chiaki, Domae, Yoshinori, and Asada, Kozi. (2001). Chloroplastic ascorbate peroxidase is the primary target of methylviologen-induced photooxidative stress in spinach leaves: its relevance to monodehydroascorbate radical detected with in vivo ESR. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1504(2-3), 275-287.
Mehterov, Nikolay, Balazadeh, Salma, Hille, Jacques, Toneva, Valentina, Mueller-Roeber, Bernd, and Gechev, Tsanko. (2012). Oxidative stress provokes distinct transcriptional responses in the stress-tolerant atr7 and stress-sensitive loh2 Arabidopsis thaliana mutants as revealed by multi-parallel quantitative real-time PCR analysis of ROS marker and antioxidant genes. Plant Physiology and Biochemistry, 59, 20-29.
Meloni, Diego A, Oliva, Marco A, Martinez, Carlos A, and Cambraia, José. (2003). Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany, 49(1), 69-76.
Mi, Shijun, Cai, Tao, Hu, Yugang, Chen, Yemiao, Hodges, Emily, Ni, Fangrui, Wu, Liang, Li, Shan, Zhou, Huanyu, and Long, Chengzu. (2008). Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5'' terminal nucleotide. Cell, 133(1), 116-127.
Mittal, Shweta, Kumari, Nilima, and Sharma, Vinay. (2012). Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiology and Biochemistry, 54, 17-26.
Mittler, Ron. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405-410.
Mittler, Ron, Vanderauwera, Sandy, Gollery, Martin, and Van Breusegem, Frank. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9(10), 490-498.
Mittova, Valentina, Guy, Micha, Tal, Moshe, and Volokita, Micha. (2004). Salinity up‐regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt‐tolerant tomato species Lycopersicon pennellii. Journal of Experimental Botany, 55(399), 1105-1113.
Molnar, Attila, Bassett, Andrew, Thuenemann, Eva, Schwach, Frank, Karkare, Shantanu, Ossowski, Stephan, Weigel, Detlef, andBaulcombe, David. (2009). Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. The Plant Journal, 58(1), 165-174.
Munns, Rana. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239-250.
Murik, Omer, Elboher, Ahinoam, and Kaplan, Aaron. (2014). Dehydroascorbate: a possible surveillance molecule of oxidative stress and programmed cell death in the green alga Chlamydomonas reinhardtii. New Phytologist, 202(2), 471-484.
Neelam, Satyabala, and Subramanyam, Rajagopal. (2013). Alteration of photochemistry and protein degradation of photosystem II from Chlamydomonas reinhardtii under high salt grown cells. Journal of Photochemistry and Photobiology B: Biology, 124, 63-70.
Niu, Yingfang F, Zhang, Menghan H, Xie, Weihong H, Li, JN, Gao, YF, Yang, Weidong D, Liu, Jiesheng S, and Li, Hongye Y. (2011). A new inducible expression system in a transformed green alga, Chlorella vulgaris. Genet Mol Res, 10(4), 3427-3434.
Niyogi, Krishna K. (1999). Photoprotection revisited: genetic and molecular approaches. Annual Review of Plant Biology, 50(1), 333-359.
Noctor, Graham, and Foyer, Christine H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Biology, 49(1), 249-279.
Parizotto, Eneida Abreu, Dunoyer, Patrice, Rahm, Nadia, Himber, Christophe, and Voinnet, Olivier. (2004). In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes & Development, 18(18), 2237-2242.
Park, Ae Kyung, Kim, Il-Sup, Do, Hackwon, Jeon, Byung Wook, Lee, Chang Woo, Roh, Soo Jung, Shin, Seung Chul, Park, Hyun, Kim, Young-Saeng, and Kim, Yul-Ho. (2016). Structure and catalytic mechanism of monodehydroascorbate reductase, MDHAR, from Oryza sativa L. japonica. Scientific Reports, 6, 33903.
Pasqualini, Stefania, Batini, Paola, Ederli, Luisa, Porceddu, Andrea, Piccioni, Carlo, De Marchis, Francesca, and Antonielli, Marisa. (2001). Effects of short‐term ozone fumigation on tobacco plants: response of the scavenging system and expression of the glutathione reductase. Plant, Cell & Environment, 24(2), 245-252.
Pignocchi, Cristina, and Foyer, Christine H. (2003). Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Current Opinion in Plant Biology, 6(4), 379-389.
Prasad, PV Vara, Vu, Joseph CV, Boote, Kenneth J, and Allen, L Hartwell. (2009). Enhancement in leaf photosynthesis and upregulation of Rubisco in the C4 sorghum plant at elevated growth carbon dioxide and temperature occur at early stages of leaf ontogeny. Functional Plant Biology, 36(9), 761-769.
Pratheesh, PT, Vineetha, M, and Kurup, G Muraleedhara. (2014). An efficient protocol for the Agrobacterium-mediated genetic transformation of microalga Chlamydomonas reinhardtii. Molecular Biotechnology, 56(6), 507-515.
Quarmby, Lynne. (2000). Meeting report: 9th International Conference on the Cell and Molecular Biology of Chlamydomonas.
Rasala, Beth A, Lee, Philip A, Shen, Zhouxin, Briggs, Steven P, Mendez, Michael, and Mayfield, Stephen P. (2012). Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PloS One, 7(8), e43349.
Rochaix, JD, and Van Dillewijn, J. (1982). Transformation of the green alga Chlamydomonas reinhardii with yeast DNA. Nature, 296, 70–72.
Rochaix, Jean-David. (2017). Chlamydomonas reinhardtii. University of Geneva, Geneva, Switzerland, 521-524.
Rohr, Jennifer, Sarkar, Nandita, Balenger, Susan, Jeong, Byeong‐ryool, and Cerutti, Heriberto. (2004). Tandem inverted repeat system for selection of effective transgenic RNAi strains in Chlamydomonas. The Plant Journal, 40(4), 611-621.
Sairam, Raj Kumar, Rao, K Veerabhadra, and Srivastava, GC. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163(5), 1037-1046.
Sano, Satoshi, and Asada, Kozi. (1994). cDNA cloning of monodehydroascorbate radical reductase from cucumber: a high degree of homology in terms of amino acid sequence between this enzyme and bacterial flavoenzymes. Plant and Cell Physiology, 35(3), 425-437.
Sano, Satoshi, Tao, Satoru, Endo, Yuko, Inaba, Tomomi, Hossain, M Anwar, MIYAKE, Chikahiro, Matsuo, Michinori, Aoki, Hideyuki, Asada, Kozi, andSaito, Kazumi. (2005). Purification and cDNA cloning of chloroplastic monodehydroascorbate reductase from spinach. Bioscience, Biotechnology, and Biochemistry, 69(4), 762-772.
Schroda, Michael. (2006). RNA silencing in Chlamydomonas: mechanisms and tools. Current Genetics, 49(2), 69-84.
Schwab, Rebecca, Ossowski, Stephan, Riester, Markus, Warthmann, Norman, and Weigel, Detlef. (2006). Highly specific gene silencing by artificial microRNAs in Arabidopsis. The Plant Cell, 18(5), 1121-1133.
Schwarz, Dianne S, Hutvágner, György, Du, Tingting, Xu, Zuoshang, Aronin, Neil, and Zamore, Phillip D. (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell, 115(2), 199-208.
Shaaltiel, Y, Glazer, A, Bocion, PF, and Gressel, J. (1988). Cross tolerance to herbicidal and environmental oxidants of plant biotypes tolerant to paraquat, sulfur dioxide, and ozone. Pesticide Biochemistry and Physiology, 31(1), 13-23.
Sheldon, Roger A. (2005). Green solvents for sustainable organic synthesis: state of the art. Green Chemistry, 7(5), 267-278.
Shimogawara, Kosuke, Fujiwara, Shoko, Grossman, Arthur, and Usuda, Hideaki. (1998). High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics, 148(4), 1821-1828.
Shu, Sheng, Sun, Jin, Guo, ShiRong, Li, Juan, Liu, ChaoJie, and Wang, ChangYi. (2010). Effects of exogenous putrescine on PS II photochemistry and ion distribution of cucumber seedlings under salt stress. Acta Horticulturae Sinica, 37(7), 1065-1072.
Sirikhachornkit, Anchalee, and Niyogi, Krishna K. (2010). Antioxidants and photo-oxidative stress responses in plants and algae The Chloroplast (pp. 379-396): Springer.
Smirnoff, Nicholas. (2000a). Ascorbate biosynthesis and function in photoprotection-Discussion. Philosophical Transactions of The Royal Society of London Series B-biological Sciences, 355(1402), 1464-1464.
Smirnoff, Nicholas. (2000b). Ascorbic acid: metabolism and functions of a multi-facetted molecule. Current Opinion in Plant Biology, 3(3), 229-235.
Smirnoff, Nicholas, Conklin, Patricia L, and Loewus, Frank A. (2001). Biosynthesis of ascorbic acid in plants: a renaissance. Annual Review of Plant Biology, 52(1), 437-467.
Smirnoff, Nicholas, andWheeler, Glen L. (2000). Ascorbic acid in plants: biosynthesis and function. Critical Reviews in Plant Sciences, 19(4), 267-290.
Stevens, R, Page, D, Gouble, B, Garchery, C, Zamir, D, and Causse, M. (2008). Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant, Cell & Environment, 31(8), 1086-1096.
Sultana, Shahanaz, Khew, Choy-Yuen, Morshed, Md Mahbub, Namasivayam, Parameswari, Napis, Suhaimi, and Ho, Chai-Ling. (2012). Overexpression of monodehydroascorbate reductase from a mangrove plant (AeMDHAR) confers salt tolerance on rice. Journal of Plant Physiology, 169(3), 311-318.
Surzycki, Raymond, Greenham, Katie, Kitayama, Kaoru, Dibal, Flora, Wagner, Richard, Rochaix, Jean-David, Ajam, Tarek, and Surzycki, Stefan. (2009). Factors effecting expression of vaccines in microalgae. Biologicals, 37(3), 133-138.
Suzuki, Nobuhiro, Koussevitzky, SHAI, Mittler, RON, and Miller, GAD. (2012). ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell & Environment, 35(2), 259-270.
Sweetlove, LJ, Heazlewood, JL, Herald, V, Holtzapffel, R, Day, DA, Leaver, CJ, and Millar, AH. (2002). The impact of oxidative stress on Arabidopsis mitochondria. The Plant Journal, 32(6), 891-904.
Tang, Li, Kwon, Suk-Yoon, Kim, Sun-Hyung, Kim, Jin-Seog, Choi, Jung Sup, Cho, Kwang Yun, Sung, Chang K, Kwak, Sang-Soo, andLee, Haeng-Soon. (2006). Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Reports, 25(12), 1380-1386.
Truffault, Vincent, Gest, Noé, Garchery, Cécile, Florian, Alexandra, Fernie, Alisdair R, Gautier, Hélène, and Stevens, Rebecca G. (2016). Reduction of MDHAR activity in cherry tomato suppresses growth and yield and MDHAR activity is correlated with sugar levels under high light. Plant, Cell & Environment, 39(6), 1279-1292.
Uzilday, Baris, Turkan, Ismail, Ozgur, Rengin, and Sekmen, Askim H. (2014). Strategies of ROS regulation and antioxidant defense during transition from C3 to C4 photosynthesis in the genus Flaveria under PEG-induced osmotic stress. Journal of Plant Physiology, 171(1), 65-75.
Wang, Zinan, Xiao, Ying, Chen, Wansheng, Tang, Kexuan, and Zhang, Lei. (2010). Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. Journal of Integrative Plant Biology, 52(4), 400-409.
Warthmann, Norman, Chen, Hao, Ossowski, Stephan, Weigel, Detlef, and Hervé, Philippe. (2008). Highly specific gene silencing by artificial miRNAs in rice. PloS One, 3(3), e1829.
Wheeler, Glen L, Jones, Mark A, and Smirnoff, Nicholas. (1998). The biosynthetic pathway of vitamin C in higher plants. Nature, 393(6683), 365.
Xu, Ping, Zhang, Yuanji, Kang, Li, Roossinck, Marilyn J, and Mysore, Kirankumar S. (2006). Computational estimation and experimental verification of off-target silencing during posttranscriptional gene silencing in plants. Plant Physiology, 142(2), 429-440.
Yin, Lina, Wang, Shiwen, Eltayeb, Amin Elsadig, Uddin, Md Imtiaz, Yamamoto, Yoko, Tsuji, Wataru, Takeuchi, Yuichi, and Tanaka, Kiyoshi. (2010). Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta, 231(3), 609-621.
Yokthongwattana, Chotika, Mahong, Bancha, Roytrakul, Sittiruk, Phaonaklop, Narumon, Narangajavana, Jarunya, and Yokthongwattana, Kittisak. (2012). Proteomic analysis of salinity-stressed Chlamydomonas reinhardtii revealed differential suppression and induction of a large number of important housekeeping proteins. Planta, 235(3), 649-659.
Yoshimura, Kazuya, Miyao, Kazuhiro, Gaber, Ahmed, Takeda, Toru, Kanaboshi, Haruo, Miyasaka, Hitoshi, and Shigeoka, Shigeru. (2004). Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. The Plant Journal, 37(1), 21-33.
Younis, Mahmoud E, Hasaneen, Mohammed NA, and Kazamel, Amany MS. (2010). Exogenously applied ascorbic acid ameliorates detrimental effects of NaCl and mannitol stress in Vicia faba seedlings. Protoplasma, 239(1-4), 39-48.
Zeng, Yan, Wagner, Eric J, and Cullen, Bryan R. (2002). Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Molecular Cell, 9(6), 1327-1333.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊